Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica

IF 2.4 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY FEMS yeast research Pub Date : 2024-09-19 DOI:10.1093/femsyr/foae030
Katsuro Matsuse, Mariho Hara, Ryo Iwama, Hiroyuki Horiuchi, Ryouichi Fukuda
{"title":"Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica","authors":"Katsuro Matsuse, Mariho Hara, Ryo Iwama, Hiroyuki Horiuchi, Ryouichi Fukuda","doi":"10.1093/femsyr/foae030","DOIUrl":null,"url":null,"abstract":"The yeast Yarrowia lipolytica can assimilate n-alkane as a carbon and energy source. To elucidate the significance of phosphatidylserine (PS) in the utilization of n-alkane in Y. lipolytica, we investigated the role of the Y. lipolytica ortholog (PSS1) of Saccharomyces cerevisiae PSS1/CHO1, which encodes a PS synthase. The PSS1 deletion mutant (pss1Δ) of Y. lipolytica could not grow on minimal medium in the absence of ethanolamine and choline but grew when either ethanolamine or choline was supplied to synthesize phosphatidylethanolamine and phosphatidylcholine. The pss1Δ strain exhibited severe growth defects on media containing n-alkanes even in the presence of ethanolamine and choline. In the pss1Δ strain, the transcription of ALK1, which encodes a primary cytochrome P450 that catalyzes the hydroxylation of n-alkanes in the endoplasmic reticulum, was upregulated by n-alkane as in the wild-type strain. However, the production of functional P450 was not detected, as indicated by the absence of reduced CO-difference spectra in the pss1Δ strain. PS was undetectable in the lipid extracts of the pss1Δ strain. These results underscore the critical role of PSS1 in the biosynthesis of PS, which is essential for the production of functional P450 enzymes involved in n-alkane hydroxylation in Y. lipolytica.","PeriodicalId":12290,"journal":{"name":"FEMS yeast research","volume":"92 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS yeast research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsyr/foae030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The yeast Yarrowia lipolytica can assimilate n-alkane as a carbon and energy source. To elucidate the significance of phosphatidylserine (PS) in the utilization of n-alkane in Y. lipolytica, we investigated the role of the Y. lipolytica ortholog (PSS1) of Saccharomyces cerevisiae PSS1/CHO1, which encodes a PS synthase. The PSS1 deletion mutant (pss1Δ) of Y. lipolytica could not grow on minimal medium in the absence of ethanolamine and choline but grew when either ethanolamine or choline was supplied to synthesize phosphatidylethanolamine and phosphatidylcholine. The pss1Δ strain exhibited severe growth defects on media containing n-alkanes even in the presence of ethanolamine and choline. In the pss1Δ strain, the transcription of ALK1, which encodes a primary cytochrome P450 that catalyzes the hydroxylation of n-alkanes in the endoplasmic reticulum, was upregulated by n-alkane as in the wild-type strain. However, the production of functional P450 was not detected, as indicated by the absence of reduced CO-difference spectra in the pss1Δ strain. PS was undetectable in the lipid extracts of the pss1Δ strain. These results underscore the critical role of PSS1 in the biosynthesis of PS, which is essential for the production of functional P450 enzymes involved in n-alkane hydroxylation in Y. lipolytica.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷脂酰丝氨酸合成酶在脂肪溶解酵母菌利用正构烷烃的过程中发挥关键作用
脂肪溶解酵母菌(Yarrowia lipolytica)可以吸收正构烷烃作为碳和能量来源。为了阐明磷脂酰丝氨酸(PS)在脂溶酵母利用正构烷烃过程中的重要作用,我们研究了脂溶酵母 PSS1/CHO1 的直向同源物(PSS1)的作用。脂溶性酵母的 PSS1 缺失突变体(pss1Δ)在缺乏乙醇胺和胆碱的最小培养基上无法生长,但在提供乙醇胺或胆碱以合成磷脂酰乙醇胺和磷脂酰胆碱时却能生长。即使在乙醇胺和胆碱存在的情况下,pss1Δ菌株在含有正构烷烃的培养基上也表现出严重的生长缺陷。在pss1Δ菌株中,与野生型菌株一样,正烷烃会上调ALK1的转录,ALK1编码一种初级细胞色素P450,在内质网中催化正烷烃的羟基化。然而,在 pss1Δ 菌株中,功能性 P450 的产生并没有被检测到,这表现在 CO 差异光谱没有降低。在 pss1Δ 菌株的脂质提取物中检测不到 PS。这些结果凸显了 PSS1 在 PS 的生物合成中的关键作用,而 PS 的生物合成对于产生参与 Y. lipolytica 中正烷烃羟基化的功能性 P450 酶至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
FEMS yeast research
FEMS yeast research 生物-生物工程与应用微生物
CiteScore
5.70
自引率
6.20%
发文量
54
审稿时长
1 months
期刊介绍: FEMS Yeast Research offers efficient publication of high-quality original Research Articles, Mini-reviews, Letters to the Editor, Perspectives and Commentaries that express current opinions. The journal will select for publication only those manuscripts deemed to be of major relevance to the field and generally will not consider articles that are largely descriptive without insights on underlying mechanism or biology. Submissions on any yeast species are welcome provided they report results within the scope outlined below and are of significance to the yeast field.
期刊最新文献
A multidimensional assessment of in-host fitness costs of drug resistance in the opportunistic fungal pathogen Candida glabrata. Bridging the Gap: linking Torulaspora delbrueckii Genotypes to Fermentation Phenotypes and Wine Aroma. Phosphatidylserine synthase plays a critical role in the utilization of n-alkanes in the yeast Yarrowia lipolytica Isolation and characterisation of Saccharomyces cerevisiae mutants with increased cell wall chitin using fluorescence-activated cell sorting The potential for scotch malt whisky flavour diversification by yeast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1