FedTinyWolf—A Memory Efficient Federated Embedded Learning Mechanism

IF 1.7 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Embedded Systems Letters Pub Date : 2024-09-17 DOI:10.1109/LES.2024.3462638
Subhrangshu Adhikary;Subhayu Dutta
{"title":"FedTinyWolf—A Memory Efficient Federated Embedded Learning Mechanism","authors":"Subhrangshu Adhikary;Subhayu Dutta","doi":"10.1109/LES.2024.3462638","DOIUrl":null,"url":null,"abstract":"Embedded intelligence is a challenging field in engineering given its resource-constrained environment which regular machine learning algorithms demand. Most embedded intelligence models are trained on a computer and then the learned parameters are transferred to the embedded devices to enable decision making. Although training the model within a microcontroller is possible, the state-of-the-art method requires further optimization. Moreover, federated learning (FL) is used in the state of the art to protect data privacy while training a deep learning model at edge level. Embedded learning models require memory enhancements to improve on-device FL. In this experiment, we have performed memory enhancement of gray wolf optimizer after finding it suitable for the purpose and implemented it to create edge-level, resource-efficient, data privacy preserving on-device federated training of embedded intelligence models. The performances are benchmarked on 13 open-sourced datasets showing a mean 10.8% accuracy enhancement.","PeriodicalId":56143,"journal":{"name":"IEEE Embedded Systems Letters","volume":"16 4","pages":"513-516"},"PeriodicalIF":1.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Embedded Systems Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10681455/","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Embedded intelligence is a challenging field in engineering given its resource-constrained environment which regular machine learning algorithms demand. Most embedded intelligence models are trained on a computer and then the learned parameters are transferred to the embedded devices to enable decision making. Although training the model within a microcontroller is possible, the state-of-the-art method requires further optimization. Moreover, federated learning (FL) is used in the state of the art to protect data privacy while training a deep learning model at edge level. Embedded learning models require memory enhancements to improve on-device FL. In this experiment, we have performed memory enhancement of gray wolf optimizer after finding it suitable for the purpose and implemented it to create edge-level, resource-efficient, data privacy preserving on-device federated training of embedded intelligence models. The performances are benchmarked on 13 open-sourced datasets showing a mean 10.8% accuracy enhancement.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FedTinyWolf - 一种内存高效的联合嵌入式学习机制
嵌入式智能是一个具有挑战性的工程领域,因为它的资源约束环境,常规机器学习算法需要。大多数嵌入式智能模型都是在计算机上进行训练,然后将学习到的参数传输到嵌入式设备中进行决策。虽然在微控制器内训练模型是可能的,但最先进的方法需要进一步优化。此外,联邦学习(FL)在边缘级别训练深度学习模型时用于保护数据隐私。嵌入式学习模型需要内存增强来改善设备上的FL。在本实验中,我们在发现灰狼优化器适合目的后对其进行了内存增强,并将其实现为嵌入式智能模型创建边缘级、资源高效、保护数据隐私的设备上联合训练。在13个开源数据集上对性能进行了基准测试,显示平均精度提高了10.8%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Embedded Systems Letters
IEEE Embedded Systems Letters Engineering-Control and Systems Engineering
CiteScore
3.30
自引率
0.00%
发文量
65
期刊介绍: The IEEE Embedded Systems Letters (ESL), provides a forum for rapid dissemination of latest technical advances in embedded systems and related areas in embedded software. The emphasis is on models, methods, and tools that ensure secure, correct, efficient and robust design of embedded systems and their applications.
期刊最新文献
Table of Contents Editorial IEEE Embedded Systems Letters Publication Information ViTSen: Bridging Vision Transformers and Edge Computing With Advanced In/Near-Sensor Processing Methodology for Formal Verification of Hardware Safety Strategies Using SMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1