Uniform \(L^p\) Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing
{"title":"Uniform \\(L^p\\) Estimates for Solutions to the Inhomogeneous 2D Navier–Stokes Equations and Application to a Chemotaxis–Fluid System with Local Sensing","authors":"Mario Fuest, Michael Winkler","doi":"10.1007/s00021-024-00899-8","DOIUrl":null,"url":null,"abstract":"<div><p>The chemotaxis-Navier–Stokes system </p><div><div><span>$$\\begin{aligned} \\left\\{ \\begin{array}{rcl} n_t+u\\cdot \\nabla n & =& \\Delta \\big (n c^{-\\alpha } \\big ), \\\\ c_t+ u\\cdot \\nabla c & =& \\Delta c -nc,\\\\ u_t + (u\\cdot \\nabla ) u & =& \\Delta u+\\nabla P + n\\nabla \\Phi , \\qquad \\nabla \\cdot u=0, \\end{array} \\right. \\end{aligned}$$</span></div></div><p>modelling the behavior of aerobic bacteria in a fluid drop, is considered in a smoothly bounded domain <span>\\(\\Omega \\subset \\mathbb R^2\\)</span>. For all <span>\\(\\alpha > 0\\)</span> and all sufficiently regular <span>\\(\\Phi \\)</span>, we construct global classical solutions and thereby extend recent results for the fluid-free analogue to the system coupled to a Navier–Stokes system. As a crucial new challenge, our analysis requires a priori estimates for <i>u</i> at a point in the proof when knowledge about <i>n</i> is essentially limited to the observation that the mass is conserved. To overcome this problem, we also prove new uniform-in-time <span>\\(L^p\\)</span> estimates for solutions to the inhomogeneous Navier–Stokes equations merely depending on the space-time <span>\\(L^2\\)</span> norm of the force term raised to an arbitrary small power.</p></div>","PeriodicalId":649,"journal":{"name":"Journal of Mathematical Fluid Mechanics","volume":"26 4","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00021-024-00899-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Fluid Mechanics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00021-024-00899-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The chemotaxis-Navier–Stokes system
$$\begin{aligned} \left\{ \begin{array}{rcl} n_t+u\cdot \nabla n & =& \Delta \big (n c^{-\alpha } \big ), \\ c_t+ u\cdot \nabla c & =& \Delta c -nc,\\ u_t + (u\cdot \nabla ) u & =& \Delta u+\nabla P + n\nabla \Phi , \qquad \nabla \cdot u=0, \end{array} \right. \end{aligned}$$
modelling the behavior of aerobic bacteria in a fluid drop, is considered in a smoothly bounded domain \(\Omega \subset \mathbb R^2\). For all \(\alpha > 0\) and all sufficiently regular \(\Phi \), we construct global classical solutions and thereby extend recent results for the fluid-free analogue to the system coupled to a Navier–Stokes system. As a crucial new challenge, our analysis requires a priori estimates for u at a point in the proof when knowledge about n is essentially limited to the observation that the mass is conserved. To overcome this problem, we also prove new uniform-in-time \(L^p\) estimates for solutions to the inhomogeneous Navier–Stokes equations merely depending on the space-time \(L^2\) norm of the force term raised to an arbitrary small power.
期刊介绍:
The Journal of Mathematical Fluid Mechanics (JMFM)is a forum for the publication of high-quality peer-reviewed papers on the mathematical theory of fluid mechanics, with special regards to the Navier-Stokes equations. As an important part of that, the journal encourages papers dealing with mathematical aspects of computational theory, as well as with applications in science and engineering. The journal also publishes in related areas of mathematics that have a direct bearing on the mathematical theory of fluid mechanics. All papers will be characterized by originality and mathematical rigor. For a paper to be accepted, it is not enough that it contains original results. In fact, results should be highly relevant to the mathematical theory of fluid mechanics, and meet a wide readership.