Yota Taniwaki, Yoshinao Nakagawa, Mizuho Yabushita and Keiichi Tomishige
{"title":"Selective hydrogenation of guaiacol to 2-methoxycyclohexanone over supported Pd catalysts†","authors":"Yota Taniwaki, Yoshinao Nakagawa, Mizuho Yabushita and Keiichi Tomishige","doi":"10.1039/D4GC03793F","DOIUrl":null,"url":null,"abstract":"<p >Selective hydrogenation of guaiacol to 2-methoxycyclohexanone was investigated with various Pd catalysts. This reaction is much more difficult than the hydrogenation of phenol to cyclohexanone, namely in terms of the low reactivity of guaiacol and the reduced selectivity of 2-methoxycyclohexanone due to the demethoxylation reaction. Pd/TiO<small><sub>2</sub></small> catalysts were found to be superior to other supported Pd catalysts in terms of activity and selectivity to 2-methoxycyclohexanone. The Pd dispersion did not affect the selectivity of Pd/TiO<small><sub>2</sub></small> catalysts. Meanwhile, the increase of Pd dispersion decreased the turnover frequency, and the optimum Pd dispersion was about 25%. The presence of residual chloride ions had a negative effect on the selectivity to 2-methoxycyclohexanone. The optimal Pd/TiO<small><sub>2</sub></small> catalyst gave 65% yield of 2-methoxycyclohexanone. The catalyst was reusable after washing with toluene solvent to extract residual organic species from the catalyst surface. The catalyst was capable of hydrogenating various phenolic compounds, namely methoxyphenols, into the corresponding cyclohexanone derivatives.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/gc/d4gc03793f","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selective hydrogenation of guaiacol to 2-methoxycyclohexanone was investigated with various Pd catalysts. This reaction is much more difficult than the hydrogenation of phenol to cyclohexanone, namely in terms of the low reactivity of guaiacol and the reduced selectivity of 2-methoxycyclohexanone due to the demethoxylation reaction. Pd/TiO2 catalysts were found to be superior to other supported Pd catalysts in terms of activity and selectivity to 2-methoxycyclohexanone. The Pd dispersion did not affect the selectivity of Pd/TiO2 catalysts. Meanwhile, the increase of Pd dispersion decreased the turnover frequency, and the optimum Pd dispersion was about 25%. The presence of residual chloride ions had a negative effect on the selectivity to 2-methoxycyclohexanone. The optimal Pd/TiO2 catalyst gave 65% yield of 2-methoxycyclohexanone. The catalyst was reusable after washing with toluene solvent to extract residual organic species from the catalyst surface. The catalyst was capable of hydrogenating various phenolic compounds, namely methoxyphenols, into the corresponding cyclohexanone derivatives.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.