Balachandran Subramanian, K. Jeeva Jothi, Mohamedazeem M. Mohideen, R. Karthikeyan, A. Santhana Krishna Kumar, Ganeshraja Ayyakannu Sundaram, K. Thirumalai, Munirah D. Albaqami, Saikh Mohammad, M. Swaminathan
{"title":"Synthesis and Characterization of Dy2O3@TiO2 Nanocomposites for Enhanced Photocatalytic and Electrocatalytic Applications","authors":"Balachandran Subramanian, K. Jeeva Jothi, Mohamedazeem M. Mohideen, R. Karthikeyan, A. Santhana Krishna Kumar, Ganeshraja Ayyakannu Sundaram, K. Thirumalai, Munirah D. Albaqami, Saikh Mohammad, M. Swaminathan","doi":"10.1021/acsengineeringau.4c00025","DOIUrl":null,"url":null,"abstract":"Industrial wastewater pollution is a crucial global issue due to the increasing need for clean water. Traditional photocatalytic methods for eliminating harmful dyes are often ineffective and are environmentally damaging. This study introduces a new, efficient photocatalyst combining Dy<sub>2</sub>O<sub>3</sub> with TiO<sub>2</sub> using a single-step hydrothermal approach. Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> nanostructures were synthesized and characterized by using XRD, SEM, EDS, TEM, BET, and UV–visible spectroscopy. Dy<sub>2</sub>O<sub>3</sub> was evenly distributed on TiO<sub>2</sub>, preventing clumping and resulting in a larger surface area with more active sites. UV irradiation (365 nm) replaced the traditional thermal energy for photocatalytic dye breakdown, leveraging the varying conductivity of the Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> nanocomposites. Incorporating Dy<sub>2</sub>O<sub>3</sub> decreased band gaps, enhancing redox reactions and expanding the range of degradable contaminants. For Rhodamine B dye degradation, the Dy<sub>2</sub>O<sub>3</sub>@TiO<sub>2</sub> composite demonstrated significantly higher degradation rates than Dy<sub>2</sub>O<sub>3</sub> or TiO<sub>2</sub> alone at reaction parameters such as neutral pH (pH 7) and catalyst concentration (2 g L<sup>–1</sup>). The hybrid material also demonstrated improved electrocatalytic activity in oxygen reduction reactions (ORRs) under alkaline conditions with an initial potential of 0.88 V and a Tafel slope of 73 mV dec<sup>–1</sup>. The enhanced catalytic activity and durability are attributed to the synergistic interaction between Dy<sub>2</sub>O<sub>3</sub> and TiO<sub>2</sub>. This novel photocatalyst offers a sustainable alternative for treating industrial effluents while reducing the environmental impact.","PeriodicalId":29804,"journal":{"name":"ACS Engineering Au","volume":"37 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Engineering Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsengineeringau.4c00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial wastewater pollution is a crucial global issue due to the increasing need for clean water. Traditional photocatalytic methods for eliminating harmful dyes are often ineffective and are environmentally damaging. This study introduces a new, efficient photocatalyst combining Dy2O3 with TiO2 using a single-step hydrothermal approach. Dy2O3@TiO2 nanostructures were synthesized and characterized by using XRD, SEM, EDS, TEM, BET, and UV–visible spectroscopy. Dy2O3 was evenly distributed on TiO2, preventing clumping and resulting in a larger surface area with more active sites. UV irradiation (365 nm) replaced the traditional thermal energy for photocatalytic dye breakdown, leveraging the varying conductivity of the Dy2O3@TiO2 nanocomposites. Incorporating Dy2O3 decreased band gaps, enhancing redox reactions and expanding the range of degradable contaminants. For Rhodamine B dye degradation, the Dy2O3@TiO2 composite demonstrated significantly higher degradation rates than Dy2O3 or TiO2 alone at reaction parameters such as neutral pH (pH 7) and catalyst concentration (2 g L–1). The hybrid material also demonstrated improved electrocatalytic activity in oxygen reduction reactions (ORRs) under alkaline conditions with an initial potential of 0.88 V and a Tafel slope of 73 mV dec–1. The enhanced catalytic activity and durability are attributed to the synergistic interaction between Dy2O3 and TiO2. This novel photocatalyst offers a sustainable alternative for treating industrial effluents while reducing the environmental impact.
期刊介绍:
)ACS Engineering Au is an open access journal that reports significant advances in chemical engineering applied chemistry and energy covering fundamentals processes and products. The journal's broad scope includes experimental theoretical mathematical computational chemical and physical research from academic and industrial settings. Short letters comprehensive articles reviews and perspectives are welcome on topics that include:Fundamental research in such areas as thermodynamics transport phenomena (flow mixing mass & heat transfer) chemical reaction kinetics and engineering catalysis separations interfacial phenomena and materialsProcess design development and intensification (e.g. process technologies for chemicals and materials synthesis and design methods process intensification multiphase reactors scale-up systems analysis process control data correlation schemes modeling machine learning Artificial Intelligence)Product research and development involving chemical and engineering aspects (e.g. catalysts plastics elastomers fibers adhesives coatings paper membranes lubricants ceramics aerosols fluidic devices intensified process equipment)Energy and fuels (e.g. pre-treatment processing and utilization of renewable energy resources; processing and utilization of fuels; properties and structure or molecular composition of both raw fuels and refined products; fuel cells hydrogen batteries; photochemical fuel and energy production; decarbonization; electrification; microwave; cavitation)Measurement techniques computational models and data on thermo-physical thermodynamic and transport properties of materials and phase equilibrium behaviorNew methods models and tools (e.g. real-time data analytics multi-scale models physics informed machine learning models machine learning enhanced physics-based models soft sensors high-performance computing)