Enhancing Smart Grid Sustainability: Using Advanced Hybrid Machine Learning Techniques While Considering Multiple Influencing Factors for Imputing Missing Electric Load Data
{"title":"Enhancing Smart Grid Sustainability: Using Advanced Hybrid Machine Learning Techniques While Considering Multiple Influencing Factors for Imputing Missing Electric Load Data","authors":"Zhiwen Hou, Jingrui Liu","doi":"10.3390/su16188092","DOIUrl":null,"url":null,"abstract":"Amidst the accelerating growth of intelligent power systems, the integrity of vast and complex datasets has become essential to promoting sustainable energy management, ensuring energy security, and supporting green living initiatives. This study introduces a novel hybrid machine learning model to address the critical issue of missing power load data—a problem that, if not managed effectively, can compromise the stability and sustainability of power grids. By integrating meteorological and temporal characteristics, the model enhances the precision of data imputation by combining random forest (RF), Spearman weighted k-nearest neighbors (SW-KNN), and Levenberg–Marquardt backpropagation (LM-BP) techniques. Additionally, a variance–covariance weighted method is used to dynamically adjust the model’s parameters to improve predictive accuracy. Tests on five metrics demonstrate that considering various correlated factors reduces errors by approximately 8–38%, and the hybrid modeling approach reduces predictive errors by 12–24% compared to single-model approaches. The proposed model not only ensures the resilience of power grid operations but also contributes to the broader goals of energy efficiency and environmental sustainability.","PeriodicalId":22183,"journal":{"name":"Sustainability","volume":"48 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainability","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3390/su16188092","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Amidst the accelerating growth of intelligent power systems, the integrity of vast and complex datasets has become essential to promoting sustainable energy management, ensuring energy security, and supporting green living initiatives. This study introduces a novel hybrid machine learning model to address the critical issue of missing power load data—a problem that, if not managed effectively, can compromise the stability and sustainability of power grids. By integrating meteorological and temporal characteristics, the model enhances the precision of data imputation by combining random forest (RF), Spearman weighted k-nearest neighbors (SW-KNN), and Levenberg–Marquardt backpropagation (LM-BP) techniques. Additionally, a variance–covariance weighted method is used to dynamically adjust the model’s parameters to improve predictive accuracy. Tests on five metrics demonstrate that considering various correlated factors reduces errors by approximately 8–38%, and the hybrid modeling approach reduces predictive errors by 12–24% compared to single-model approaches. The proposed model not only ensures the resilience of power grid operations but also contributes to the broader goals of energy efficiency and environmental sustainability.
期刊介绍:
Sustainability (ISSN 2071-1050) is an international and cross-disciplinary scholarly, open access journal of environmental, cultural, economic and social sustainability of human beings, which provides an advanced forum for studies related to sustainability and sustainable development. It publishes reviews, regular research papers, communications and short notes, and there is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research relating to natural sciences, social sciences and humanities in as much detail as possible in order to promote scientific predictions and impact assessments of global change and development. Full experimental and methodical details must be provided so that the results can be reproduced.