Luminescent Composite Films Based on Mechanically Strong Ladder-like Polyphenylsilsesquioxane and Oligophenyleuropiumsiloxane

IF 4.1 2区 化学 Q2 POLYMER SCIENCE Chinese Journal of Polymer Science Pub Date : 2024-09-13 DOI:10.1007/s10118-024-3190-9
E. E. Kim, T. O. Ershova, A. S. Belova, D. A. Khanin, E. V. Bashkova, G. G. Nikiforova, Yu. N. Kononevich, A. A. Anisimov, O. I. Shchegolikhina, A. M. Muzafarov
{"title":"Luminescent Composite Films Based on Mechanically Strong Ladder-like Polyphenylsilsesquioxane and Oligophenyleuropiumsiloxane","authors":"E. E. Kim,&nbsp;T. O. Ershova,&nbsp;A. S. Belova,&nbsp;D. A. Khanin,&nbsp;E. V. Bashkova,&nbsp;G. G. Nikiforova,&nbsp;Yu. N. Kononevich,&nbsp;A. A. Anisimov,&nbsp;O. I. Shchegolikhina,&nbsp;A. M. Muzafarov","doi":"10.1007/s10118-024-3190-9","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays organosilicon luminescent materials are of increasing interest due to the variety of their synthetic or modification techniques and application fields. Ladder polyphenylsilsesquioxanes (L-PPSQ) are a unique class of organosilicon polymers, which can be ideal matrices for the luminescent composites due to their high thermal stability, optical transparency and mechanical strength. In this work, new mechanically strong, heat-resistant, transparent and sensitive to ammonia vapor luminescent composite films based on L-PPSQ have been obtained. As the source of Europium ions oligophenyleuropiumsiloxane was used, demonstrating perfect compatibility to the matrix due to the similar nature. To improve luminescent properties of the films, new organosilicon ligands were introduced into the composites and their influence on the properties of the materials was studied. Valuable properties of described composites may allow their further application as multifunctional coatings.</p></div>","PeriodicalId":517,"journal":{"name":"Chinese Journal of Polymer Science","volume":"42 11","pages":"1793 - 1801"},"PeriodicalIF":4.1000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10118-024-3190-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays organosilicon luminescent materials are of increasing interest due to the variety of their synthetic or modification techniques and application fields. Ladder polyphenylsilsesquioxanes (L-PPSQ) are a unique class of organosilicon polymers, which can be ideal matrices for the luminescent composites due to their high thermal stability, optical transparency and mechanical strength. In this work, new mechanically strong, heat-resistant, transparent and sensitive to ammonia vapor luminescent composite films based on L-PPSQ have been obtained. As the source of Europium ions oligophenyleuropiumsiloxane was used, demonstrating perfect compatibility to the matrix due to the similar nature. To improve luminescent properties of the films, new organosilicon ligands were introduced into the composites and their influence on the properties of the materials was studied. Valuable properties of described composites may allow their further application as multifunctional coatings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机械强度梯状聚苯基硅倍半氧烷和低聚苯基呋喃硅氧烷的发光复合薄膜
如今,有机硅发光材料因其合成或改性技术的多样性以及应用领域的广泛性而越来越受到人们的关注。阶梯状聚苯基硅倍半氧烷(L-PPSQ)是一类独特的有机硅聚合物,具有高热稳定性、光学透明性和机械强度,是发光复合材料的理想基质。这项研究以 L-PPSQ 为基础,获得了机械强度高、耐热、透明且对氨蒸气敏感的新型发光复合薄膜。作为铕离子的来源,使用了低聚苯基脲硅氧烷,由于其性质相似,与基体具有完美的兼容性。为了提高薄膜的发光特性,在复合材料中引入了新的有机硅配体,并研究了它们对材料特性的影响。所述复合材料的宝贵特性可使其进一步应用于多功能涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Polymer Science
Chinese Journal of Polymer Science 化学-高分子科学
CiteScore
7.10
自引率
11.60%
发文量
218
审稿时长
6.0 months
期刊介绍: Chinese Journal of Polymer Science (CJPS) is a monthly journal published in English and sponsored by the Chinese Chemical Society and the Institute of Chemistry, Chinese Academy of Sciences. CJPS is edited by a distinguished Editorial Board headed by Professor Qi-Feng Zhou and supported by an International Advisory Board in which many famous active polymer scientists all over the world are included. The journal was first published in 1983 under the title Polymer Communications and has the current name since 1985. CJPS is a peer-reviewed journal dedicated to the timely publication of original research ideas and results in the field of polymer science. The issues may carry regular papers, rapid communications and notes as well as feature articles. As a leading polymer journal in China published in English, CJPS reflects the new achievements obtained in various laboratories of China, CJPS also includes papers submitted by scientists of different countries and regions outside of China, reflecting the international nature of the journal.
期刊最新文献
Chemical Synthesis of Globo H and Mannobiose Glycopolymers and their Immunological Stimulation Crosslinked Natural Rubber and Styrene Butadiene Rubber Blends/Carbon Black Composites for Self-healable and Energy-saved Applications Doping Effect of Poly(vinylidene fluoride) on Carbon Nanofibers Deduced by Thermoelectric Analysis of Their Melt Mixed Films Fabrication of Modified Fibrous Filters by Electrospinning and Investigating Their Application as Improved Face Masks Special Issue: Dynamic Polymer Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1