Dynamical Targeted Ensemble Learning for Streaming Data With Concept Drift

IF 8.9 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Knowledge and Data Engineering Pub Date : 2024-09-13 DOI:10.1109/TKDE.2024.3460404
Husheng Guo;Yang Zhang;Wenjian Wang
{"title":"Dynamical Targeted Ensemble Learning for Streaming Data With Concept Drift","authors":"Husheng Guo;Yang Zhang;Wenjian Wang","doi":"10.1109/TKDE.2024.3460404","DOIUrl":null,"url":null,"abstract":"Concept drift is an important characteristic and inevitable difficult problem in streaming data mining. Ensemble learning is commonly used to deal with concept drift. However, most ensemble methods cannot balance the accuracy and diversity of base learners after drift occurs, and cannot adjust adaptively according to the drift type. To solve these problems, this paper proposes a targeted ensemble learning (Targeted EL) method to improve the accuracy and diversity of ensemble learning for streaming data with abrupt and gradual concept drift. First, to improve the accuracy of the base learners, the method adopts different sample weighting strategies for different types of drift to realize bidirectional transfer of new and old distributed samples. Second, the difference matrix is constructed by the prediction results of the base learners on the current samples. According to the drift type, the submatrix with appropriate size and maximum difference sum is extracted adaptively to select appropriate, accuracy and diverse base learners for ensemble. The experimental results show that the proposed method can achieve good generalization performance when dealing with the streaming data with abrupt and gradual concept drift.","PeriodicalId":13496,"journal":{"name":"IEEE Transactions on Knowledge and Data Engineering","volume":"36 12","pages":"8023-8036"},"PeriodicalIF":8.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Knowledge and Data Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679918/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Concept drift is an important characteristic and inevitable difficult problem in streaming data mining. Ensemble learning is commonly used to deal with concept drift. However, most ensemble methods cannot balance the accuracy and diversity of base learners after drift occurs, and cannot adjust adaptively according to the drift type. To solve these problems, this paper proposes a targeted ensemble learning (Targeted EL) method to improve the accuracy and diversity of ensemble learning for streaming data with abrupt and gradual concept drift. First, to improve the accuracy of the base learners, the method adopts different sample weighting strategies for different types of drift to realize bidirectional transfer of new and old distributed samples. Second, the difference matrix is constructed by the prediction results of the base learners on the current samples. According to the drift type, the submatrix with appropriate size and maximum difference sum is extracted adaptively to select appropriate, accuracy and diverse base learners for ensemble. The experimental results show that the proposed method can achieve good generalization performance when dealing with the streaming data with abrupt and gradual concept drift.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对概念漂移流数据的动态目标集合学习
概念漂移是流数据挖掘的一个重要特征,也是不可避免的难题。集合学习通常被用来解决概念漂移问题。然而,大多数集合学习方法无法平衡漂移发生后基础学习器的准确性和多样性,也无法根据漂移类型进行自适应调整。为了解决这些问题,本文提出了一种有针对性的集合学习(Targeted EL)方法,以提高集合学习对突然和渐进概念漂移的流数据的准确性和多样性。首先,为了提高基础学习器的准确性,该方法针对不同类型的漂移采用了不同的样本加权策略,实现了新旧分布样本的双向转移。其次,根据基础学习器对当前样本的预测结果构建差值矩阵。根据漂移类型,自适应地提取具有适当大小和最大差值和的子矩阵,以选择合适、准确和多样化的基础学习器进行集合。实验结果表明,在处理具有突变和渐变概念漂移的流数据时,所提出的方法可以实现良好的泛化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Knowledge and Data Engineering
IEEE Transactions on Knowledge and Data Engineering 工程技术-工程:电子与电气
CiteScore
11.70
自引率
3.40%
发文量
515
审稿时长
6 months
期刊介绍: The IEEE Transactions on Knowledge and Data Engineering encompasses knowledge and data engineering aspects within computer science, artificial intelligence, electrical engineering, computer engineering, and related fields. It provides an interdisciplinary platform for disseminating new developments in knowledge and data engineering and explores the practicality of these concepts in both hardware and software. Specific areas covered include knowledge-based and expert systems, AI techniques for knowledge and data management, tools, and methodologies, distributed processing, real-time systems, architectures, data management practices, database design, query languages, security, fault tolerance, statistical databases, algorithms, performance evaluation, and applications.
期刊最新文献
SE Factual Knowledge in Frozen Giant Code Model: A Study on FQN and Its Retrieval Online Dynamic Hybrid Broad Learning System for Real-Time Safety Assessment of Dynamic Systems Iterative Soft Prompt-Tuning for Unsupervised Domain Adaptation A Derivative Topic Dissemination Model Based on Representation Learning and Topic Relevance L-ASCRA: A Linearithmic Time Approximate Spectral Clustering Algorithm Using Topologically-Preserved Representatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1