Olivia Doolan, Mathew G. Lewsey, Marta Peirats-Llobet, Neil Bricklebank, Nicola Aberdein
{"title":"Micro computed tomography analysis of barley during the first 24 hours of germination","authors":"Olivia Doolan, Mathew G. Lewsey, Marta Peirats-Llobet, Neil Bricklebank, Nicola Aberdein","doi":"10.1186/s13007-024-01266-4","DOIUrl":null,"url":null,"abstract":"Grains make up a large proportion of both human and animal diets. With threats to food production, such as climate change, growing sustainable and successful crops is essential to food security in the future. Germination is one of the most important stages in a plant’s lifecycle and is key to the success of the resulting plant as the grain undergoes morphological changes and the development of specific organs. Micro-computed tomography is a non-destructive imaging technique based on the differing x-ray attenuations of materials which we have applied for the accurate analysis of grain morphology during the germination phase. Micro Computed Tomography conditions and parameters were tested to establish an optimal protocol for the 3-dimensional analysis of barley grains. When comparing optimal scanning conditions, it was established that no filter, 0.4 degrees rotation step, 5 average frames, and 2016 × 1344 camera binning is optimal for imaging germinating grains. It was determined that the optimal protocol for scanning during the germination timeline was to scan individual grains at 0 h after imbibition (HAI) and then the same grain again at set time points (1, 3, 6, 24 HAI) to avoid any negative effects from X-ray radiation or disruption to growing conditions. Here we sought to develop a method for the accurate analysis of grain morphology without the negative effects of possible radiation exposure. Several factors have been considered, such as the scanning conditions, reconstruction, and possible effects of X-ray radiation on the growth rate of the grains. The parameters chosen in this study give effective and reliable results for the 3-dimensional analysis of macro structures within barley grains while causing minimal disruption to grain development.","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"19 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01266-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Grains make up a large proportion of both human and animal diets. With threats to food production, such as climate change, growing sustainable and successful crops is essential to food security in the future. Germination is one of the most important stages in a plant’s lifecycle and is key to the success of the resulting plant as the grain undergoes morphological changes and the development of specific organs. Micro-computed tomography is a non-destructive imaging technique based on the differing x-ray attenuations of materials which we have applied for the accurate analysis of grain morphology during the germination phase. Micro Computed Tomography conditions and parameters were tested to establish an optimal protocol for the 3-dimensional analysis of barley grains. When comparing optimal scanning conditions, it was established that no filter, 0.4 degrees rotation step, 5 average frames, and 2016 × 1344 camera binning is optimal for imaging germinating grains. It was determined that the optimal protocol for scanning during the germination timeline was to scan individual grains at 0 h after imbibition (HAI) and then the same grain again at set time points (1, 3, 6, 24 HAI) to avoid any negative effects from X-ray radiation or disruption to growing conditions. Here we sought to develop a method for the accurate analysis of grain morphology without the negative effects of possible radiation exposure. Several factors have been considered, such as the scanning conditions, reconstruction, and possible effects of X-ray radiation on the growth rate of the grains. The parameters chosen in this study give effective and reliable results for the 3-dimensional analysis of macro structures within barley grains while causing minimal disruption to grain development.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.