Dongli Wang, Xiaolin Zhu, Jinfu Liu, Zixin Zhang, Yan Zhou
{"title":"Multi-dimensional convolution transformer for group activity recognition","authors":"Dongli Wang, Xiaolin Zhu, Jinfu Liu, Zixin Zhang, Yan Zhou","doi":"10.1007/s11042-024-19973-4","DOIUrl":null,"url":null,"abstract":"<p>Group activity recognition, which aims to understand the activity performed by a group of people, has attracted growing attention in the realm of computer vision over the past decade. In this paper, we propose a novel multi-dimensional convolution Transformer network for group activity recognition, which not only models spatial-temporal feature representations, but also combines channel information to analyze the spatial-temporal dependencies of individual actors. Specifically, we first construct a multi-scale feature extraction module in the feature extraction stage, which can exploit discriminative high-level and low-level feature representations. The multi-branching strategy combined with the dilated convolution can further capture multi-scale feature information in complex group scenarios. Then, to construct the inter-dependence among involved actors from different dimensions, we design a multi-dimensional convolution Transformer in the relational reasoning stage, which consists of the following three parts: a channel attention module, a spatial-temporal convolutional Transformer, and a spatial-temporal attention module. Finally, the final activity recognition result is obtained by using a softmax classifier. Extensive experiments on two public GAR datasets demonstrate that the recognition accuracy on the Volleyball Dataset and Collective Activity Dataset can reach 92.8% and 96.1%, respectively, which is a significant improvement compared with the mainstream methods in recent years.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"32 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-19973-4","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Group activity recognition, which aims to understand the activity performed by a group of people, has attracted growing attention in the realm of computer vision over the past decade. In this paper, we propose a novel multi-dimensional convolution Transformer network for group activity recognition, which not only models spatial-temporal feature representations, but also combines channel information to analyze the spatial-temporal dependencies of individual actors. Specifically, we first construct a multi-scale feature extraction module in the feature extraction stage, which can exploit discriminative high-level and low-level feature representations. The multi-branching strategy combined with the dilated convolution can further capture multi-scale feature information in complex group scenarios. Then, to construct the inter-dependence among involved actors from different dimensions, we design a multi-dimensional convolution Transformer in the relational reasoning stage, which consists of the following three parts: a channel attention module, a spatial-temporal convolutional Transformer, and a spatial-temporal attention module. Finally, the final activity recognition result is obtained by using a softmax classifier. Extensive experiments on two public GAR datasets demonstrate that the recognition accuracy on the Volleyball Dataset and Collective Activity Dataset can reach 92.8% and 96.1%, respectively, which is a significant improvement compared with the mainstream methods in recent years.
期刊介绍:
Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed.
Specific areas of interest include:
- Multimedia Tools:
- Multimedia Applications:
- Prototype multimedia systems and platforms