DE-DFKD: diversity enhancing data-free knowledge distillation

IF 3 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Multimedia Tools and Applications Pub Date : 2024-09-14 DOI:10.1007/s11042-024-20193-z
Yanni Liu, Ayong Ye, Qiulin Chen, Yuexin Zhang, Jianwei Chen
{"title":"DE-DFKD: diversity enhancing data-free knowledge distillation","authors":"Yanni Liu, Ayong Ye, Qiulin Chen, Yuexin Zhang, Jianwei Chen","doi":"10.1007/s11042-024-20193-z","DOIUrl":null,"url":null,"abstract":"<p>Data-Free Knowledge Distillation (DFKD) can be used to train students using synthetic data, when the original dataset of the teacher network is not accessible. However, existing studies mainly focus on how to use the prior knowledge of the teacher network to synthesize data, ignoring the lack of diversity of synthesized data, which leads to the inability of the student network to learn the real data distribution and low robustness. In this paper, we propose a Diversity-Enhanced Data-Free Knowledge Distillation (DE-DFKD) method based on the idea of generative image modelling, which introduces conditional generative networks and metric learning to solve the problem of class imbalance and single intra-class data distribution in synthetic datasets. The experimental results show that DE-DFKD synthesizes better quality data on MNIST, CIFAR-10, and CIFAR-100 datasets with Frechet Inception Distance (FID) values of 51.79, 60.25, and 50.1, respectively, and higher accuracy of student networks compared with existing schemes.</p>","PeriodicalId":18770,"journal":{"name":"Multimedia Tools and Applications","volume":"77 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimedia Tools and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11042-024-20193-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Data-Free Knowledge Distillation (DFKD) can be used to train students using synthetic data, when the original dataset of the teacher network is not accessible. However, existing studies mainly focus on how to use the prior knowledge of the teacher network to synthesize data, ignoring the lack of diversity of synthesized data, which leads to the inability of the student network to learn the real data distribution and low robustness. In this paper, we propose a Diversity-Enhanced Data-Free Knowledge Distillation (DE-DFKD) method based on the idea of generative image modelling, which introduces conditional generative networks and metric learning to solve the problem of class imbalance and single intra-class data distribution in synthetic datasets. The experimental results show that DE-DFKD synthesizes better quality data on MNIST, CIFAR-10, and CIFAR-100 datasets with Frechet Inception Distance (FID) values of 51.79, 60.25, and 50.1, respectively, and higher accuracy of student networks compared with existing schemes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DE-DFKD:多样性增强型无数据知识提炼
当教师网络的原始数据集无法获取时,无数据知识蒸馏(DFKD)可用于使用合成数据训练学生。然而,现有研究主要关注如何利用教师网络的先验知识合成数据,忽略了合成数据缺乏多样性的问题,导致学生网络无法学习真实数据分布,鲁棒性较低。本文基于生成图像建模的思想,提出了一种多样性增强的无数据知识蒸馏(Diversity-Enhanced Data-Free Knowledge Distillation,DE-DFKD)方法,引入条件生成网络和度量学习来解决合成数据集中类不平衡和类内数据分布单一的问题。实验结果表明,与现有方案相比,DE-DFKD 在 MNIST、CIFAR-10 和 CIFAR-100 数据集上合成的数据质量更好,Frechet Inception Distance (FID) 值分别为 51.79、60.25 和 50.1,学生网络的准确率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Multimedia Tools and Applications
Multimedia Tools and Applications 工程技术-工程:电子与电气
CiteScore
7.20
自引率
16.70%
发文量
2439
审稿时长
9.2 months
期刊介绍: Multimedia Tools and Applications publishes original research articles on multimedia development and system support tools as well as case studies of multimedia applications. It also features experimental and survey articles. The journal is intended for academics, practitioners, scientists and engineers who are involved in multimedia system research, design and applications. All papers are peer reviewed. Specific areas of interest include: - Multimedia Tools: - Multimedia Applications: - Prototype multimedia systems and platforms
期刊最新文献
MeVs-deep CNN: optimized deep learning model for efficient lung cancer classification Text-driven clothed human image synthesis with 3D human model estimation for assistance in shopping Hybrid golden jackal fusion based recommendation system for spatio-temporal transportation's optimal traffic congestion and road condition classification Deep-Dixon: Deep-Learning frameworks for fusion of MR T1 images for fat and water extraction Unified pre-training with pseudo infrared images for visible-infrared person re-identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1