{"title":"Effective Parallel Redundancy Analysis Using GPU for Memory Repair","authors":"Seung Ho Shin;Hayoung Lee;Sungho Kang","doi":"10.1109/TVLSI.2024.3454286","DOIUrl":null,"url":null,"abstract":"The rapid increment of the memory density leads to an increment of fault occurrence in memory cells. To improve the memory yield, effective memory test and repair methodologies for automatic test equipment (ATE) have been studied. Multiple memory chips are tested simultaneously by the ATE to improve throughput and reduce costs. In general, redundancy analysis (RA) is used for memory repair. However, since conventional RA methods store fault information in the respective failure bitmaps and operate sequentially, those have limitations due to the high area and analysis time. To address these problems, a novel graphic processing unit (GPU)-based RA method has been proposed which significantly enhances the efficiency of searching for repair solutions for multiple memories. The proposed RA method strategically focuses on the pivot line to efficiently utilize parallel processing and reduce the solution search space. Moreover, the proposed method does not require the extensive use of failure bitmaps since all process is conducted on the GPU. The process involves real-time fault collection, analysis, spare allocation, and solution decision process dynamically during the memory test. Experimental results demonstrate that the performance of the proposed RA method achieves an optimal repair rate and high analysis speed for multiple memories.","PeriodicalId":13425,"journal":{"name":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","volume":"33 2","pages":"462-474"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Very Large Scale Integration (VLSI) Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10679780/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid increment of the memory density leads to an increment of fault occurrence in memory cells. To improve the memory yield, effective memory test and repair methodologies for automatic test equipment (ATE) have been studied. Multiple memory chips are tested simultaneously by the ATE to improve throughput and reduce costs. In general, redundancy analysis (RA) is used for memory repair. However, since conventional RA methods store fault information in the respective failure bitmaps and operate sequentially, those have limitations due to the high area and analysis time. To address these problems, a novel graphic processing unit (GPU)-based RA method has been proposed which significantly enhances the efficiency of searching for repair solutions for multiple memories. The proposed RA method strategically focuses on the pivot line to efficiently utilize parallel processing and reduce the solution search space. Moreover, the proposed method does not require the extensive use of failure bitmaps since all process is conducted on the GPU. The process involves real-time fault collection, analysis, spare allocation, and solution decision process dynamically during the memory test. Experimental results demonstrate that the performance of the proposed RA method achieves an optimal repair rate and high analysis speed for multiple memories.
期刊介绍:
The IEEE Transactions on VLSI Systems is published as a monthly journal under the co-sponsorship of the IEEE Circuits and Systems Society, the IEEE Computer Society, and the IEEE Solid-State Circuits Society.
Design and realization of microelectronic systems using VLSI/ULSI technologies require close collaboration among scientists and engineers in the fields of systems architecture, logic and circuit design, chips and wafer fabrication, packaging, testing and systems applications. Generation of specifications, design and verification must be performed at all abstraction levels, including the system, register-transfer, logic, circuit, transistor and process levels.
To address this critical area through a common forum, the IEEE Transactions on VLSI Systems have been founded. The editorial board, consisting of international experts, invites original papers which emphasize and merit the novel systems integration aspects of microelectronic systems including interactions among systems design and partitioning, logic and memory design, digital and analog circuit design, layout synthesis, CAD tools, chips and wafer fabrication, testing and packaging, and systems level qualification. Thus, the coverage of these Transactions will focus on VLSI/ULSI microelectronic systems integration.