Lazar Milić, Nor Syafirah Zambry, Fatimah Binti Ibrahim, Bojan Petrović, Sanja Kojić, Aung Thiha, Karunan Joseph, Nurul Fauzani Jamaluddin, Goran M. Stojanović
{"title":"Advances in textile-based microfluidics for biomolecule sensing","authors":"Lazar Milić, Nor Syafirah Zambry, Fatimah Binti Ibrahim, Bojan Petrović, Sanja Kojić, Aung Thiha, Karunan Joseph, Nurul Fauzani Jamaluddin, Goran M. Stojanović","doi":"10.1063/5.0222244","DOIUrl":null,"url":null,"abstract":"Textile-based microfluidic biosensors represent an innovative fusion of various multidisciplinary fields, including bioelectronics, material sciences, and microfluidics. Their potential in biomedicine is significant as they leverage textiles to achieve high demands of biocompatibility with the human body and conform to the irregular surfaces of the body. In the field of microfluidics, fabric coated with hydrophobic materials serves as channels through which liquids are transferred in precise amounts to the sensing element, which in this case is a biosensor. This paper presents a condensed overview of the current developments in textile-based microfluidics and biosensors in biomedical applications over the past 20 years (2005–2024). A literature search was performed using the Scopus database. The fabrication techniques and materials used are discussed in this paper, as these will be key in various modifications and advancements in textile-based microfluidics. Furthermore, we also address the gaps in the application of textile-based microfluidic analytical devices in biomedicine and discuss the potential solutions. Advances in textile-based microfluidics are enabled by various printing and fabric manufacturing techniques, such as screen printing, embroidery, and weaving. Integration of these devices into everyday clothing holds promise for future vital sign monitoring, such as glucose, albumin, lactate, and ion levels, as well as early detection of hereditary diseases through gene detection. Although most testing currently takes place in a laboratory or controlled environment, this field is rapidly evolving and pushing the boundaries of biomedicine, improving the quality of human life.","PeriodicalId":8855,"journal":{"name":"Biomicrofluidics","volume":"41 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomicrofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0222244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Textile-based microfluidic biosensors represent an innovative fusion of various multidisciplinary fields, including bioelectronics, material sciences, and microfluidics. Their potential in biomedicine is significant as they leverage textiles to achieve high demands of biocompatibility with the human body and conform to the irregular surfaces of the body. In the field of microfluidics, fabric coated with hydrophobic materials serves as channels through which liquids are transferred in precise amounts to the sensing element, which in this case is a biosensor. This paper presents a condensed overview of the current developments in textile-based microfluidics and biosensors in biomedical applications over the past 20 years (2005–2024). A literature search was performed using the Scopus database. The fabrication techniques and materials used are discussed in this paper, as these will be key in various modifications and advancements in textile-based microfluidics. Furthermore, we also address the gaps in the application of textile-based microfluidic analytical devices in biomedicine and discuss the potential solutions. Advances in textile-based microfluidics are enabled by various printing and fabric manufacturing techniques, such as screen printing, embroidery, and weaving. Integration of these devices into everyday clothing holds promise for future vital sign monitoring, such as glucose, albumin, lactate, and ion levels, as well as early detection of hereditary diseases through gene detection. Although most testing currently takes place in a laboratory or controlled environment, this field is rapidly evolving and pushing the boundaries of biomedicine, improving the quality of human life.
期刊介绍:
Biomicrofluidics (BMF) is an online-only journal published by AIP Publishing to rapidly disseminate research in fundamental physicochemical mechanisms associated with microfluidic and nanofluidic phenomena. BMF also publishes research in unique microfluidic and nanofluidic techniques for diagnostic, medical, biological, pharmaceutical, environmental, and chemical applications.
BMF offers quick publication, multimedia capability, and worldwide circulation among academic, national, and industrial laboratories. With a primary focus on high-quality original research articles, BMF also organizes special sections that help explain and define specific challenges unique to the interdisciplinary field of biomicrofluidics.
Microfluidic and nanofluidic actuation (electrokinetics, acoustofluidics, optofluidics, capillary)
Liquid Biopsy (microRNA profiling, circulating tumor cell isolation, exosome isolation, circulating tumor DNA quantification)
Cell sorting, manipulation, and transfection (di/electrophoresis, magnetic beads, optical traps, electroporation)
Molecular Separation and Concentration (isotachophoresis, concentration polarization, di/electrophoresis, magnetic beads, nanoparticles)
Cell culture and analysis(single cell assays, stimuli response, stem cell transfection)
Genomic and proteomic analysis (rapid gene sequencing, DNA/protein/carbohydrate arrays)
Biosensors (immuno-assay, nucleic acid fluorescent assay, colorimetric assay, enzyme amplification, plasmonic and Raman nano-reporter, molecular beacon, FRET, aptamer, nanopore, optical fibers)
Biophysical transport and characterization (DNA, single protein, ion channel and membrane dynamics, cell motility and communication mechanisms, electrophysiology, patch clamping). Etc...