Xingwang Huang , Min Xie , Dong An , Shubin Su , Zongliang Zhang
{"title":"Task scheduling in cloud computing based on grey wolf optimization with a new encoding mechanism","authors":"Xingwang Huang , Min Xie , Dong An , Shubin Su , Zongliang Zhang","doi":"10.1016/j.parco.2024.103111","DOIUrl":null,"url":null,"abstract":"<div><p>Task scheduling in the cloud computing still remains challenging in terms of performance. Several evolutionary-derived algorithms have been proposed to solve or alleviate this problem. However, evolutionary algorithms have good exploration ability, but the performance drops significantly in high dimensions. To address this issue, considering the characteristic of task scheduling in cloud computing (i.e. all task-VM mappings are 1-dimensional and have the same search range), we propose a task scheduling algorithm based on grey wolf optimization using a new encoding mechanism (GWOEM) in this work. Through this new encoding mechanism, greedy and evolutionary algorithms are rationally integrated in GWOEM. Besides, based on the new mechanism, the dimension of search space is reduced to 1 and the key parameter (i.e., the population size) is eliminated. We apply the proposed GWOEM to the Google Cloud Jobs dataset (GoCJ) and demonstrate better performance than the prior state of the art in terms of makespan.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"122 ","pages":"Article 103111"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000498","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Task scheduling in the cloud computing still remains challenging in terms of performance. Several evolutionary-derived algorithms have been proposed to solve or alleviate this problem. However, evolutionary algorithms have good exploration ability, but the performance drops significantly in high dimensions. To address this issue, considering the characteristic of task scheduling in cloud computing (i.e. all task-VM mappings are 1-dimensional and have the same search range), we propose a task scheduling algorithm based on grey wolf optimization using a new encoding mechanism (GWOEM) in this work. Through this new encoding mechanism, greedy and evolutionary algorithms are rationally integrated in GWOEM. Besides, based on the new mechanism, the dimension of search space is reduced to 1 and the key parameter (i.e., the population size) is eliminated. We apply the proposed GWOEM to the Google Cloud Jobs dataset (GoCJ) and demonstrate better performance than the prior state of the art in terms of makespan.
期刊介绍:
Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems.
Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results.
Particular technical areas of interest include, but are not limited to:
-System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing).
-Enabling software including debuggers, performance tools, and system and numeric libraries.
-General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems
-Software engineering and productivity as it relates to parallel computing
-Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism
-Performance measurement results on state-of-the-art systems
-Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures.
-Parallel I/O systems both hardware and software
-Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications