Task scheduling in cloud computing based on grey wolf optimization with a new encoding mechanism

IF 2 4区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS Parallel Computing Pub Date : 2024-09-17 DOI:10.1016/j.parco.2024.103111
Xingwang Huang , Min Xie , Dong An , Shubin Su , Zongliang Zhang
{"title":"Task scheduling in cloud computing based on grey wolf optimization with a new encoding mechanism","authors":"Xingwang Huang ,&nbsp;Min Xie ,&nbsp;Dong An ,&nbsp;Shubin Su ,&nbsp;Zongliang Zhang","doi":"10.1016/j.parco.2024.103111","DOIUrl":null,"url":null,"abstract":"<div><p>Task scheduling in the cloud computing still remains challenging in terms of performance. Several evolutionary-derived algorithms have been proposed to solve or alleviate this problem. However, evolutionary algorithms have good exploration ability, but the performance drops significantly in high dimensions. To address this issue, considering the characteristic of task scheduling in cloud computing (i.e. all task-VM mappings are 1-dimensional and have the same search range), we propose a task scheduling algorithm based on grey wolf optimization using a new encoding mechanism (GWOEM) in this work. Through this new encoding mechanism, greedy and evolutionary algorithms are rationally integrated in GWOEM. Besides, based on the new mechanism, the dimension of search space is reduced to 1 and the key parameter (i.e., the population size) is eliminated. We apply the proposed GWOEM to the Google Cloud Jobs dataset (GoCJ) and demonstrate better performance than the prior state of the art in terms of makespan.</p></div>","PeriodicalId":54642,"journal":{"name":"Parallel Computing","volume":"122 ","pages":"Article 103111"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167819124000498","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Task scheduling in the cloud computing still remains challenging in terms of performance. Several evolutionary-derived algorithms have been proposed to solve or alleviate this problem. However, evolutionary algorithms have good exploration ability, but the performance drops significantly in high dimensions. To address this issue, considering the characteristic of task scheduling in cloud computing (i.e. all task-VM mappings are 1-dimensional and have the same search range), we propose a task scheduling algorithm based on grey wolf optimization using a new encoding mechanism (GWOEM) in this work. Through this new encoding mechanism, greedy and evolutionary algorithms are rationally integrated in GWOEM. Besides, based on the new mechanism, the dimension of search space is reduced to 1 and the key parameter (i.e., the population size) is eliminated. We apply the proposed GWOEM to the Google Cloud Jobs dataset (GoCJ) and demonstrate better performance than the prior state of the art in terms of makespan.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于灰狼优化和新编码机制的云计算任务调度
云计算中的任务调度在性能方面仍面临挑战。为了解决或缓解这一问题,人们提出了几种进化衍生算法。然而,进化算法具有良好的探索能力,但在高维度下性能明显下降。针对这一问题,考虑到云计算中任务调度的特点(即所有任务-VM 映射都是一维的,且具有相同的搜索范围),我们在本研究中提出了一种基于灰狼优化的任务调度算法,并使用了一种新的编码机制(GWOEM)。通过这种新的编码机制,贪婪算法和进化算法被合理地集成到了 GWOEM 中。此外,在新机制的基础上,搜索空间的维度被降为 1,关键参数(即种群规模)被取消。我们将所提出的 GWOEM 应用于 Google Cloud Jobs 数据集 (GoCJ),结果表明其在时间跨度方面的性能优于现有技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Parallel Computing
Parallel Computing 工程技术-计算机:理论方法
CiteScore
3.50
自引率
7.10%
发文量
49
审稿时长
4.5 months
期刊介绍: Parallel Computing is an international journal presenting the practical use of parallel computer systems, including high performance architecture, system software, programming systems and tools, and applications. Within this context the journal covers all aspects of high-end parallel computing from single homogeneous or heterogenous computing nodes to large-scale multi-node systems. Parallel Computing features original research work and review articles as well as novel or illustrative accounts of application experience with (and techniques for) the use of parallel computers. We also welcome studies reproducing prior publications that either confirm or disprove prior published results. Particular technical areas of interest include, but are not limited to: -System software for parallel computer systems including programming languages (new languages as well as compilation techniques), operating systems (including middleware), and resource management (scheduling and load-balancing). -Enabling software including debuggers, performance tools, and system and numeric libraries. -General hardware (architecture) concepts, new technologies enabling the realization of such new concepts, and details of commercially available systems -Software engineering and productivity as it relates to parallel computing -Applications (including scientific computing, deep learning, machine learning) or tool case studies demonstrating novel ways to achieve parallelism -Performance measurement results on state-of-the-art systems -Approaches to effectively utilize large-scale parallel computing including new algorithms or algorithm analysis with demonstrated relevance to real applications using existing or next generation parallel computer architectures. -Parallel I/O systems both hardware and software -Networking technology for support of high-speed computing demonstrating the impact of high-speed computation on parallel applications
期刊最新文献
Towards resilient and energy efficient scalable Krylov solvers Seesaw: A 4096-bit vector processor for accelerating Kyber based on RISC-V ISA extensions Editorial Board FastPTM: Fast weights loading of pre-trained models for parallel inference service provisioning Distributed consensus-based estimation of the leading eigenvalue of a non-negative irreducible matrix
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1