Exact Wavefront Propagation for Globally Optimal One-to-All Path Planning on 2D Cartesian Grids

Ibrahim Ibrahim, Joris Gillis, Wilm Decré, Jan Swevers
{"title":"Exact Wavefront Propagation for Globally Optimal One-to-All Path Planning on 2D Cartesian Grids","authors":"Ibrahim Ibrahim, Joris Gillis, Wilm Decré, Jan Swevers","doi":"arxiv-2409.11545","DOIUrl":null,"url":null,"abstract":"This paper introduces an efficient $\\mathcal{O}(n)$ compute and memory\ncomplexity algorithm for globally optimal path planning on 2D Cartesian grids.\nUnlike existing marching methods that rely on approximate discretized solutions\nto the Eikonal equation, our approach achieves exact wavefront propagation by\npivoting the analytic distance function based on visibility. The algorithm\nleverages a dynamic-programming subroutine to efficiently evaluate visibility\nqueries. Through benchmarking against state-of-the-art any-angle path planners,\nwe demonstrate that our method outperforms existing approaches in both speed\nand accuracy, particularly in cluttered environments. Notably, our method\ninherently provides globally optimal paths to all grid points, eliminating the\nneed for additional gradient descent steps per path query. The same capability\nextends to multiple starting positions. We also provide a greedy version of our\nalgorithm as well as open-source C++ implementation of our solver.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces an efficient $\mathcal{O}(n)$ compute and memory complexity algorithm for globally optimal path planning on 2D Cartesian grids. Unlike existing marching methods that rely on approximate discretized solutions to the Eikonal equation, our approach achieves exact wavefront propagation by pivoting the analytic distance function based on visibility. The algorithm leverages a dynamic-programming subroutine to efficiently evaluate visibility queries. Through benchmarking against state-of-the-art any-angle path planners, we demonstrate that our method outperforms existing approaches in both speed and accuracy, particularly in cluttered environments. Notably, our method inherently provides globally optimal paths to all grid points, eliminating the need for additional gradient descent steps per path query. The same capability extends to multiple starting positions. We also provide a greedy version of our algorithm as well as open-source C++ implementation of our solver.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在二维笛卡尔网格上进行全局最优 "一对全 "路径规划的精确波前传播
本文介绍了一种高效的$\mathcal{O}(n)$计算和内存复杂度算法,用于二维笛卡尔网格上的全局最优路径规划。与依赖于艾克纳方程近似离散解的现有行进方法不同,我们的方法通过激活基于可见度的解析距离函数来实现精确的波前传播。该算法利用动态编程子程序来高效评估可见性查询。通过与最先进的任意角度路径规划器进行基准测试,我们证明我们的方法在速度和精度上都优于现有方法,尤其是在杂乱的环境中。值得注意的是,我们的方法本身就能提供通往所有网格点的全局最优路径,从而消除了每次路径查询都需要额外梯度下降步骤的需要。同样的能力也适用于多个起始位置。我们还提供了我们算法的贪婪版本,以及求解器的开源 C++ 实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1