SDP: Spiking Diffusion Policy for Robotic Manipulation with Learnable Channel-Wise Membrane Thresholds

Zhixing Hou, Maoxu Gao, Hang Yu, Mengyu Yang, Chio-In Ieong
{"title":"SDP: Spiking Diffusion Policy for Robotic Manipulation with Learnable Channel-Wise Membrane Thresholds","authors":"Zhixing Hou, Maoxu Gao, Hang Yu, Mengyu Yang, Chio-In Ieong","doi":"arxiv-2409.11195","DOIUrl":null,"url":null,"abstract":"This paper introduces a Spiking Diffusion Policy (SDP) learning method for\nrobotic manipulation by integrating Spiking Neurons and Learnable Channel-wise\nMembrane Thresholds (LCMT) into the diffusion policy model, thereby enhancing\ncomputational efficiency and achieving high performance in evaluated tasks.\nSpecifically, the proposed SDP model employs the U-Net architecture as the\nbackbone for diffusion learning within the Spiking Neural Network (SNN). It\nstrategically places residual connections between the spike convolution\noperations and the Leaky Integrate-and-Fire (LIF) nodes, thereby preventing\ndisruptions to the spiking states. Additionally, we introduce a temporal\nencoding block and a temporal decoding block to transform static and dynamic\ndata with timestep $T_S$ into each other, enabling the transmission of data\nwithin the SNN in spike format. Furthermore, we propose LCMT to enable the\nadaptive acquisition of membrane potential thresholds, thereby matching the\nconditions of varying membrane potentials and firing rates across channels and\navoiding the cumbersome process of manually setting and tuning hyperparameters.\nEvaluating the SDP model on seven distinct tasks with SNN timestep $T_S=4$, we\nachieve results comparable to those of the ANN counterparts, along with faster\nconvergence speeds than the baseline SNN method. This improvement is\naccompanied by a reduction of 94.3\\% in dynamic energy consumption estimated on\n45nm hardware.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.11195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a Spiking Diffusion Policy (SDP) learning method for robotic manipulation by integrating Spiking Neurons and Learnable Channel-wise Membrane Thresholds (LCMT) into the diffusion policy model, thereby enhancing computational efficiency and achieving high performance in evaluated tasks. Specifically, the proposed SDP model employs the U-Net architecture as the backbone for diffusion learning within the Spiking Neural Network (SNN). It strategically places residual connections between the spike convolution operations and the Leaky Integrate-and-Fire (LIF) nodes, thereby preventing disruptions to the spiking states. Additionally, we introduce a temporal encoding block and a temporal decoding block to transform static and dynamic data with timestep $T_S$ into each other, enabling the transmission of data within the SNN in spike format. Furthermore, we propose LCMT to enable the adaptive acquisition of membrane potential thresholds, thereby matching the conditions of varying membrane potentials and firing rates across channels and avoiding the cumbersome process of manually setting and tuning hyperparameters. Evaluating the SDP model on seven distinct tasks with SNN timestep $T_S=4$, we achieve results comparable to those of the ANN counterparts, along with faster convergence speeds than the baseline SNN method. This improvement is accompanied by a reduction of 94.3\% in dynamic energy consumption estimated on 45nm hardware.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SDP:利用可学习的通道膜阈值实现机器人操纵的尖峰扩散策略
本文介绍了一种用于机器人操纵的尖峰扩散策略(SDP)学习方法,它将尖峰神经元和可学习通道膜阈值(LCMT)集成到扩散策略模型中,从而提高了计算效率,并在评估任务中实现了高性能。具体来说,所提出的SDP模型采用U-Net架构作为尖峰神经网络(SNN)内扩散学习的骨干。它策略性地将残余连接置于尖峰卷积迭代和泄漏整合与发射(LIF)节点之间,从而防止尖峰状态受到破坏。此外,我们还引入了一个时序编码块和一个时序解码块,将时间步长为 $T_S$ 的静态数据和动态数据相互转换,从而在 SNN 中以尖峰格式传输数据。此外,我们还提出了 LCMT,以实现膜电位阈值的自适应采集,从而匹配不同通道的不同膜电位和发射率条件,并避免了手动设置和调整超参数的繁琐过程。在 SNN 时间步为 $T_S=4$ 的七个不同任务上评估了 SDP 模型,我们取得了与 ANN 对应模型相当的结果,而且收敛速度比基准 SNN 方法更快。同时,在 45 纳米硬件上估算的动态能耗降低了 94.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1