Bundle Adjustment in the Eager Mode

Zitong Zhan, Huan Xu, Zihang Fang, Xinpeng Wei, Yaoyu Hu, Chen Wang
{"title":"Bundle Adjustment in the Eager Mode","authors":"Zitong Zhan, Huan Xu, Zihang Fang, Xinpeng Wei, Yaoyu Hu, Chen Wang","doi":"arxiv-2409.12190","DOIUrl":null,"url":null,"abstract":"Bundle adjustment (BA) is a critical technique in various robotic\napplications, such as simultaneous localization and mapping (SLAM), augmented\nreality (AR), and photogrammetry. BA optimizes parameters such as camera poses\nand 3D landmarks to align them with observations. With the growing importance\nof deep learning in perception systems, there is an increasing need to\nintegrate BA with deep learning frameworks for enhanced reliability and\nperformance. However, widely-used C++-based BA frameworks, such as GTSAM,\ng$^2$o, and Ceres, lack native integration with modern deep learning libraries\nlike PyTorch. This limitation affects their flexibility, adaptability, ease of\ndebugging, and overall implementation efficiency. To address this gap, we\nintroduce an eager-mode BA framework seamlessly integrated with PyPose,\nproviding PyTorch-compatible interfaces with high efficiency. Our approach\nincludes GPU-accelerated, differentiable, and sparse operations designed for\n2nd-order optimization, Lie group and Lie algebra operations, and linear\nsolvers. Our eager-mode BA on GPU demonstrates substantial runtime efficiency,\nachieving an average speedup of 18.5$\\times$, 22$\\times$, and 23$\\times$\ncompared to GTSAM, g$^2$o, and Ceres, respectively.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"119 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bundle adjustment (BA) is a critical technique in various robotic applications, such as simultaneous localization and mapping (SLAM), augmented reality (AR), and photogrammetry. BA optimizes parameters such as camera poses and 3D landmarks to align them with observations. With the growing importance of deep learning in perception systems, there is an increasing need to integrate BA with deep learning frameworks for enhanced reliability and performance. However, widely-used C++-based BA frameworks, such as GTSAM, g$^2$o, and Ceres, lack native integration with modern deep learning libraries like PyTorch. This limitation affects their flexibility, adaptability, ease of debugging, and overall implementation efficiency. To address this gap, we introduce an eager-mode BA framework seamlessly integrated with PyPose, providing PyTorch-compatible interfaces with high efficiency. Our approach includes GPU-accelerated, differentiable, and sparse operations designed for 2nd-order optimization, Lie group and Lie algebra operations, and linear solvers. Our eager-mode BA on GPU demonstrates substantial runtime efficiency, achieving an average speedup of 18.5$\times$, 22$\times$, and 23$\times$ compared to GTSAM, g$^2$o, and Ceres, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
急切模式下的捆绑调整
捆绑调整(BA)是多种机器人应用中的一项关键技术,如同步定位与测绘(SLAM)、增强现实(AR)和摄影测量。BA可优化相机姿势和三维地标等参数,使其与观测结果保持一致。随着深度学习在感知系统中的重要性与日俱增,人们越来越需要将 BA 与深度学习框架集成起来,以提高可靠性和性能。然而,GTSAM、g$^2$o 和 Ceres 等广泛使用的基于 C++ 的 BA 框架缺乏与 PyTorch 等现代深度学习库的原生集成。这种限制影响了它们的灵活性、适应性、调试的简便性和整体实现效率。为了弥补这一缺陷,我们引入了与 PyPose 无缝集成的急迫模式 BA 框架,提供了与 PyTorch 兼容的高效接口。我们的方法包括为二阶优化设计的 GPU 加速、可微分和稀疏运算、李群和李代数运算以及线性求解器。与 GTSAM、g$^2$o 和 Ceres 相比,我们在 GPU 上的急迫模式 BA 的运行效率大幅提高,分别平均提速 18.5 倍、22 倍和 23 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1