Bi-objective trail-planning for a robot team orienteering in a hazardous environment

Cory M. Simon, Jeffrey Richley, Lucas Overbey, Darleen Perez-Lavin
{"title":"Bi-objective trail-planning for a robot team orienteering in a hazardous environment","authors":"Cory M. Simon, Jeffrey Richley, Lucas Overbey, Darleen Perez-Lavin","doi":"arxiv-2409.12114","DOIUrl":null,"url":null,"abstract":"Teams of mobile [aerial, ground, or aquatic] robots have applications in\nresource delivery, patrolling, information-gathering, agriculture, forest fire\nfighting, chemical plume source localization and mapping, and\nsearch-and-rescue. Robot teams traversing hazardous environments -- with e.g.\nrough terrain or seas, strong winds, or adversaries capable of attacking or\ncapturing robots -- should plan and coordinate their trails in consideration of\nrisks of disablement, destruction, or capture. Specifically, the robots should\ntake the safest trails, coordinate their trails to cooperatively achieve the\nteam-level objective with robustness to robot failures, and balance the reward\nfrom visiting locations against risks of robot losses. Herein, we consider\nbi-objective trail-planning for a mobile team of robots orienteering in a\nhazardous environment. The hazardous environment is abstracted as a directed\ngraph whose arcs, when traversed by a robot, present known probabilities of\nsurvival. Each node of the graph offers a reward to the team if visited by a\nrobot (which e.g. delivers a good to or images the node). We wish to search for\nthe Pareto-optimal robot-team trail plans that maximize two [conflicting] team\nobjectives: the expected (i) team reward and (ii) number of robots that survive\nthe mission. A human decision-maker can then select trail plans that balance,\naccording to their values, reward and robot survival. We implement ant colony\noptimization, guided by heuristics, to search for the Pareto-optimal set of\nrobot team trail plans. As a case study, we illustrate with an\ninformation-gathering mission in an art museum.","PeriodicalId":501031,"journal":{"name":"arXiv - CS - Robotics","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.12114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Teams of mobile [aerial, ground, or aquatic] robots have applications in resource delivery, patrolling, information-gathering, agriculture, forest fire fighting, chemical plume source localization and mapping, and search-and-rescue. Robot teams traversing hazardous environments -- with e.g. rough terrain or seas, strong winds, or adversaries capable of attacking or capturing robots -- should plan and coordinate their trails in consideration of risks of disablement, destruction, or capture. Specifically, the robots should take the safest trails, coordinate their trails to cooperatively achieve the team-level objective with robustness to robot failures, and balance the reward from visiting locations against risks of robot losses. Herein, we consider bi-objective trail-planning for a mobile team of robots orienteering in a hazardous environment. The hazardous environment is abstracted as a directed graph whose arcs, when traversed by a robot, present known probabilities of survival. Each node of the graph offers a reward to the team if visited by a robot (which e.g. delivers a good to or images the node). We wish to search for the Pareto-optimal robot-team trail plans that maximize two [conflicting] team objectives: the expected (i) team reward and (ii) number of robots that survive the mission. A human decision-maker can then select trail plans that balance, according to their values, reward and robot survival. We implement ant colony optimization, guided by heuristics, to search for the Pareto-optimal set of robot team trail plans. As a case study, we illustrate with an information-gathering mission in an art museum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
机器人团队在危险环境中定向越野的双目标路径规划
移动[空中、地面或水上]机器人小组可应用于资源运送、巡逻、信息收集、农业、森林灭火、化学羽流源定位和绘图以及搜索和救援。机器人团队在穿越危险环境(如崎岖的地形或海洋、强风或能够攻击或捕获机器人的对手)时,应在考虑到瘫痪、破坏或捕获风险的情况下规划和协调它们的路径。具体来说,机器人应选择最安全的路径,协调它们的路径,以合作实现团队级目标,同时保证机器人故障的稳健性,并平衡访问地点带来的奖励与机器人损失的风险。在这里,我们考虑的是在危险环境中进行定向越野的移动机器人团队的双目标路径规划。危险环境被抽象为一个有向图,当机器人穿越该图中的弧时,其生存概率是已知的。图中的每个节点如果被机器人访问(例如,向节点运送物品或图像),都会给团队带来奖励。我们希望搜索帕累托最优机器人-团队路径计划,使两个[相互冲突的]团队目标最大化:预期的 (i) 团队奖励和 (ii) 任务中存活的机器人数量。然后,人类决策者可以根据奖励和机器人存活率这两个目标的价值,选择平衡的路径计划。在启发式方法的指导下,我们采用了蚁群优化方法来搜索帕累托最优的机器人团队路径计划集。作为案例研究,我们以艺术博物馆中的信息收集任务为例进行说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMRL: Integrating Visual, Physical, Temporal, and Geometric Representations for Enhanced Food Acquisition Human-Robot Cooperative Piano Playing with Learning-Based Real-Time Music Accompaniment GauTOAO: Gaussian-based Task-Oriented Affordance of Objects Reinforcement Learning with Lie Group Orientations for Robotics Haptic-ACT: Bridging Human Intuition with Compliant Robotic Manipulation via Immersive VR
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1