Computational modelling of mouse atrio ventricular node action potential and automaticity.

Chiara Bartolucci,Pietro Mesirca,Eugenio Ricci,Clara Sales-Bellés,Eleonora Torre,Julien Louradour,Matteo Elia Mangoni,Stefano Severi
{"title":"Computational modelling of mouse atrio ventricular node action potential and automaticity.","authors":"Chiara Bartolucci,Pietro Mesirca,Eugenio Ricci,Clara Sales-Bellés,Eleonora Torre,Julien Louradour,Matteo Elia Mangoni,Stefano Severi","doi":"10.1113/jp285950","DOIUrl":null,"url":null,"abstract":"The atrioventricular node (AVN) is a crucial component of the cardiac conduction system. Despite its pivotal role in regulating the transmission of electrical signals between atria and ventricles, a comprehensive understanding of the cellular electrophysiological mechanisms governing AVN function has remained elusive. This paper presents a detailed computational model of mouse AVN cell action potential (AP). Our model builds upon previous work and introduces several key refinements, including accurate representation of membrane currents and exchangers, calcium handling, cellular compartmentalization, dynamic update of intracellular ion concentrations, and calcium buffering. We recalibrated and validated the model against existing and unpublished experimental data. In control conditions, our model reproduces the AVN AP experimental features, (e.g. rate = 175 bpm, experimental range [121, 191] bpm). Notably, our study sheds light on the contribution of L-type calcium currents, through both Cav1.2 and Cav1.3 channels, in AVN cells. The model replicates several experimental observations, including the cessation of firing upon block of Cav1.3 or INa,r current. If block induces a reduction in beating rate of 11%. In summary, this work presents a comprehensive computational model of mouse AVN cell AP, offering a valuable tool for investigating pacemaking mechanisms and simulating the impact of ionic current blockades. By integrating calcium handling and refining formulation of ionic currents, our model advances understanding of this critical component of the cardiac conduction system, providing a platform for future developments in cardiac electrophysiology. KEY POINTS: This paper introduces a comprehensive computational model of mouse atrioventricular node (AVN) cell action potentials (APs). Our model is based on the electrophysiological data from isolated mouse AVN cells and exhibits an action potential and calcium transient that closely match the experimental records. By simulating the effects of blocking specific ionic currents, the model effectively predicts the roles of L-type Cav1.2 and Cav1.3 channels, T-type calcium channels, sodium currents (TTX-sensitive and TTX-resistant), and the funny current (If) in AVN pacemaking. The study also emphasizes the significance of other ionic currents, including IKr, Ito, IKur, in regulating AP characteristics and cycle length in AVN cells. The model faithfully reproduces the rate dependence of action potentials under pacing, opening the possibility of use in impulse propagation models. The population-of-models approach showed the robustness of this new AP model in simulating a wide spectrum of cellular pacemaking in AVN.","PeriodicalId":501632,"journal":{"name":"The Journal of Physiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1113/jp285950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The atrioventricular node (AVN) is a crucial component of the cardiac conduction system. Despite its pivotal role in regulating the transmission of electrical signals between atria and ventricles, a comprehensive understanding of the cellular electrophysiological mechanisms governing AVN function has remained elusive. This paper presents a detailed computational model of mouse AVN cell action potential (AP). Our model builds upon previous work and introduces several key refinements, including accurate representation of membrane currents and exchangers, calcium handling, cellular compartmentalization, dynamic update of intracellular ion concentrations, and calcium buffering. We recalibrated and validated the model against existing and unpublished experimental data. In control conditions, our model reproduces the AVN AP experimental features, (e.g. rate = 175 bpm, experimental range [121, 191] bpm). Notably, our study sheds light on the contribution of L-type calcium currents, through both Cav1.2 and Cav1.3 channels, in AVN cells. The model replicates several experimental observations, including the cessation of firing upon block of Cav1.3 or INa,r current. If block induces a reduction in beating rate of 11%. In summary, this work presents a comprehensive computational model of mouse AVN cell AP, offering a valuable tool for investigating pacemaking mechanisms and simulating the impact of ionic current blockades. By integrating calcium handling and refining formulation of ionic currents, our model advances understanding of this critical component of the cardiac conduction system, providing a platform for future developments in cardiac electrophysiology. KEY POINTS: This paper introduces a comprehensive computational model of mouse atrioventricular node (AVN) cell action potentials (APs). Our model is based on the electrophysiological data from isolated mouse AVN cells and exhibits an action potential and calcium transient that closely match the experimental records. By simulating the effects of blocking specific ionic currents, the model effectively predicts the roles of L-type Cav1.2 and Cav1.3 channels, T-type calcium channels, sodium currents (TTX-sensitive and TTX-resistant), and the funny current (If) in AVN pacemaking. The study also emphasizes the significance of other ionic currents, including IKr, Ito, IKur, in regulating AP characteristics and cycle length in AVN cells. The model faithfully reproduces the rate dependence of action potentials under pacing, opening the possibility of use in impulse propagation models. The population-of-models approach showed the robustness of this new AP model in simulating a wide spectrum of cellular pacemaking in AVN.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小鼠寰枢室结动作电位和自动性的计算建模
房室结(AVN)是心脏传导系统的重要组成部分。尽管房室结在调节心房和心室之间的电信号传输方面起着关键作用,但人们对支配房室结功能的细胞电生理机制仍然缺乏全面的了解。本文介绍了一个详细的小鼠 AVN 细胞动作电位(AP)计算模型。我们的模型建立在先前工作的基础上,并引入了几项关键改进,包括准确表示膜电流和交换器、钙处理、细胞区隔、细胞内离子浓度动态更新和钙缓冲。我们根据现有和未发表的实验数据对模型进行了重新校准和验证。在对照条件下,我们的模型再现了 AVN AP 的实验特征(例如,速率 = 175 bpm,实验范围 [121, 191] bpm)。值得注意的是,我们的研究揭示了 L 型钙电流通过 Cav1.2 和 Cav1.3 通道对 AVN 细胞的贡献。该模型复制了多项实验观察结果,包括阻断 Cav1.3 或 INa,r 电流时停止跳动。如果阻断会导致跳动率降低 11%。总之,这项研究提出了一个全面的小鼠 AVN 细胞 AP 计算模型,为研究起搏机制和模拟离子电流阻断的影响提供了一个有价值的工具。通过整合钙处理和完善离子电流的表述,我们的模型加深了人们对心脏传导系统这一关键组成部分的理解,为心脏电生理学的未来发展提供了一个平台。要点:本文介绍了小鼠房室结(AVN)细胞动作电位(APs)的综合计算模型。我们的模型基于离体小鼠房室结细胞的电生理数据,其动作电位和钙离子瞬态与实验记录非常吻合。通过模拟阻断特定离子电流的影响,该模型有效预测了 L 型 Cav1.2 和 Cav1.3 通道、T 型钙通道、钠离子电流(TTX 敏感和 TTX 抗性)以及滑稽电流(If)在房室神经起搏中的作用。研究还强调了其他离子电流(包括 IKr、Ito 和 IKur)在调节房室神经细胞的 AP 特性和周期长度方面的重要作用。该模型忠实地再现了起搏下动作电位的速率依赖性,为脉冲传播模型的应用提供了可能。模型群体法显示了这一新的 AP 模型在模拟 AVN 细胞起搏的广谱性方面的稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tilted but not down: Exercise during bed rest improves mitochondrial function in older adults. Lipopolysaccharide accelerates peristalsis by stimulating glucagon-like peptide-1 release from L cells in the rat proximal colon. Mathematical modelling of the train station of the heart: the atrio-ventricular node. Peripheral chemoreflex restrains skeletal muscle blood flow during exercise in participants with treated hypertension. Protein kinase C epsilon contributes to chronic mechanoreflex sensitization in rats with heart failure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1