Wenhong Zhou, Jia Chen, Tao Liao, Quanxin Wu, Ning Guo, Guolie Xie, Hao Lin, Cao Li, Yun Liu
{"title":"Ag Nanoparticles on MXene Nanosheets for Combined Ionic and Photothermal Therapy of Bacterial Infections","authors":"Wenhong Zhou, Jia Chen, Tao Liao, Quanxin Wu, Ning Guo, Guolie Xie, Hao Lin, Cao Li, Yun Liu","doi":"10.1021/acsanm.4c01331","DOIUrl":null,"url":null,"abstract":"In view of the increasing bacterial resistance, 2D MXenes are promising alternatives to antibiotics. However, MXene-based photothermal therapy (PTT) suffers from unsatisfactory antibacterial efficiency and heat-resistant strains. Here, we prepared a Ti<sub>3</sub>C<sub>2</sub> MXene and Ag hybridized antibacterial nanocomposite [MXene/metal-polyphenol networks (MPNs)/Ag] through the in situ reduction of Ag nanoparticles on MPN wrapped MXene matrix. The use of MPNs as the reducing agents of Ag<sup>+</sup> and anchoring agents of Ag nanoparticles endowed MXene/MPN/Ag with a tight immobilization capacity and improved colloidal dispersion stability of Ag nanoparticles. The pH-triggered decomposition of MPNs led to the pH-responsive release of Ag to achieve combined MXene-based PTT and Ag-mediated therapy for enhanced antibacterial efficiency. In vitro antibacterial experiments revealed its satisfactory bactericidal activities against both planktonic bacteria and bacteria in stubborn biofilms. In vivo antibacterial assays solidly confirmed its high antibacterial therapeutic efficiency, strong anti-inflammatory ability, and good biosafety. Therefore, the in situ combination of Ag nanoparticles with MXenes offers a promising microenvironment-responsive 2D bactericidal candidate for infection that could be applied in future antibacterial treatments.","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsanm.4c01331","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In view of the increasing bacterial resistance, 2D MXenes are promising alternatives to antibiotics. However, MXene-based photothermal therapy (PTT) suffers from unsatisfactory antibacterial efficiency and heat-resistant strains. Here, we prepared a Ti3C2 MXene and Ag hybridized antibacterial nanocomposite [MXene/metal-polyphenol networks (MPNs)/Ag] through the in situ reduction of Ag nanoparticles on MPN wrapped MXene matrix. The use of MPNs as the reducing agents of Ag+ and anchoring agents of Ag nanoparticles endowed MXene/MPN/Ag with a tight immobilization capacity and improved colloidal dispersion stability of Ag nanoparticles. The pH-triggered decomposition of MPNs led to the pH-responsive release of Ag to achieve combined MXene-based PTT and Ag-mediated therapy for enhanced antibacterial efficiency. In vitro antibacterial experiments revealed its satisfactory bactericidal activities against both planktonic bacteria and bacteria in stubborn biofilms. In vivo antibacterial assays solidly confirmed its high antibacterial therapeutic efficiency, strong anti-inflammatory ability, and good biosafety. Therefore, the in situ combination of Ag nanoparticles with MXenes offers a promising microenvironment-responsive 2D bactericidal candidate for infection that could be applied in future antibacterial treatments.
期刊介绍:
ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.