Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers

Raika Karimi, Faezeh Faez, Yingxue Zhang, Xing Li, Lei Chen, Mingxuan Yuan, Mahdi Biparva
{"title":"Logic Synthesis Optimization with Predictive Self-Supervision via Causal Transformers","authors":"Raika Karimi, Faezeh Faez, Yingxue Zhang, Xing Li, Lei Chen, Mingxuan Yuan, Mahdi Biparva","doi":"arxiv-2409.10653","DOIUrl":null,"url":null,"abstract":"Contemporary hardware design benefits from the abstraction provided by\nhigh-level logic gates, streamlining the implementation of logic circuits.\nLogic Synthesis Optimization (LSO) operates at one level of abstraction within\nthe Electronic Design Automation (EDA) workflow, targeting improvements in\nlogic circuits with respect to performance metrics such as size and speed in\nthe final layout. Recent trends in the field show a growing interest in\nleveraging Machine Learning (ML) for EDA, notably through ML-guided logic\nsynthesis utilizing policy-based Reinforcement Learning (RL) methods.Despite\nthese advancements, existing models face challenges such as overfitting and\nlimited generalization, attributed to constrained public circuits and the\nexpressiveness limitations of graph encoders. To address these hurdles, and\ntackle data scarcity issues, we introduce LSOformer, a novel approach\nharnessing Autoregressive transformer models and predictive SSL to predict the\ntrajectory of Quality of Results (QoR). LSOformer integrates cross-attention\nmodules to merge insights from circuit graphs and optimization sequences,\nthereby enhancing prediction accuracy for QoR metrics. Experimental studies\nvalidate the effectiveness of LSOformer, showcasing its superior performance\nover baseline architectures in QoR prediction tasks, where it achieves\nimprovements of 5.74%, 4.35%, and 17.06% on the EPFL, OABCD, and proprietary\ncircuits datasets, respectively, in inductive setup.","PeriodicalId":501479,"journal":{"name":"arXiv - CS - Artificial Intelligence","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Contemporary hardware design benefits from the abstraction provided by high-level logic gates, streamlining the implementation of logic circuits. Logic Synthesis Optimization (LSO) operates at one level of abstraction within the Electronic Design Automation (EDA) workflow, targeting improvements in logic circuits with respect to performance metrics such as size and speed in the final layout. Recent trends in the field show a growing interest in leveraging Machine Learning (ML) for EDA, notably through ML-guided logic synthesis utilizing policy-based Reinforcement Learning (RL) methods.Despite these advancements, existing models face challenges such as overfitting and limited generalization, attributed to constrained public circuits and the expressiveness limitations of graph encoders. To address these hurdles, and tackle data scarcity issues, we introduce LSOformer, a novel approach harnessing Autoregressive transformer models and predictive SSL to predict the trajectory of Quality of Results (QoR). LSOformer integrates cross-attention modules to merge insights from circuit graphs and optimization sequences, thereby enhancing prediction accuracy for QoR metrics. Experimental studies validate the effectiveness of LSOformer, showcasing its superior performance over baseline architectures in QoR prediction tasks, where it achieves improvements of 5.74%, 4.35%, and 17.06% on the EPFL, OABCD, and proprietary circuits datasets, respectively, in inductive setup.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过因果变换器进行预测性自我监督的逻辑合成优化
逻辑合成优化(LSO)在电子设计自动化(EDA)工作流程中的一个抽象层次上运行,目标是在最终布局的尺寸和速度等性能指标方面改进逻辑电路。该领域的最新趋势表明,人们对将机器学习(ML)应用于 EDA 的兴趣与日俱增,特别是通过利用基于策略的强化学习(RL)方法进行 ML 引导的逻辑合成。尽管取得了这些进步,但现有模型仍面临过度拟合和泛化受限等挑战,这归因于受限的公共电路和图编码器的可执行性限制。为了克服这些障碍并解决数据稀缺问题,我们引入了 LSOformer,这是一种利用自回归变压器模型和预测性 SSL 来预测结果质量(QoR)轨迹的新方法。LSOformer 集成了交叉注意模块,将电路图和优化序列中的见解融合在一起,从而提高了 QoR 指标的预测精度。实验研究验证了 LSOformer 的有效性,展示了它在 QoR 预测任务中优于基线架构的性能,在归纳设置中,LSOformer 在 EPFL、OABCD 和 proprietarycircuits 数据集上的性能分别提高了 5.74%、4.35% 和 17.06%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abductive explanations of classifiers under constraints: Complexity and properties Explaining Non-monotonic Normative Reasoning using Argumentation Theory with Deontic Logic Towards Explainable Goal Recognition Using Weight of Evidence (WoE): A Human-Centered Approach A Metric Hybrid Planning Approach to Solving Pandemic Planning Problems with Simple SIR Models Neural Networks for Vehicle Routing Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1