Promoting Gas Extraction Technology with Screen Pipe for Long Borehole Protection in Soft Seam

IF 2.8 4区 工程技术 Q2 ENGINEERING, CHEMICAL Processes Pub Date : 2024-09-16 DOI:10.3390/pr12091996
Lin Wang, Dezhang Wang, Xiangjun Chen, Rui Min
{"title":"Promoting Gas Extraction Technology with Screen Pipe for Long Borehole Protection in Soft Seam","authors":"Lin Wang, Dezhang Wang, Xiangjun Chen, Rui Min","doi":"10.3390/pr12091996","DOIUrl":null,"url":null,"abstract":"The inherent properties of soft coal seams and their mechanical environment make long boreholes susceptible to issues like collapse, deformation, and blockages. These problems shorten the service life of the boreholes and hinder extraction efficiency. This paper tackles these challenges by analyzing the deformation and damage patterns of long boreholes in soft coal seams. It examines the stress distribution and deformation characteristics around both protected and unprotected boreholes at different burial depths. Additionally, it recommends using screen pipe protection technology to improve gas extraction and mining operations, as demonstrated in Changping Coal Mine. The results show that screen pipe protection substantially improves the stress distribution and deformation stability of coal seam boreholes. The flow attenuation coefficients of two boreholes equipped with protection technology decreased by 48% and 61%. After 50 days of extraction from boreholes with a protection rate exceeding 90%, gas concentration remained above 50%, which is 2.59 times higher than that of unprotected boreholes. This technology effectively addresses the frequent accidents, poor extraction performance, and inefficiency of long boreholes in soft coal seams, ensuring the mine’s safe and efficient production.","PeriodicalId":20597,"journal":{"name":"Processes","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Processes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/pr12091996","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The inherent properties of soft coal seams and their mechanical environment make long boreholes susceptible to issues like collapse, deformation, and blockages. These problems shorten the service life of the boreholes and hinder extraction efficiency. This paper tackles these challenges by analyzing the deformation and damage patterns of long boreholes in soft coal seams. It examines the stress distribution and deformation characteristics around both protected and unprotected boreholes at different burial depths. Additionally, it recommends using screen pipe protection technology to improve gas extraction and mining operations, as demonstrated in Changping Coal Mine. The results show that screen pipe protection substantially improves the stress distribution and deformation stability of coal seam boreholes. The flow attenuation coefficients of two boreholes equipped with protection technology decreased by 48% and 61%. After 50 days of extraction from boreholes with a protection rate exceeding 90%, gas concentration remained above 50%, which is 2.59 times higher than that of unprotected boreholes. This technology effectively addresses the frequent accidents, poor extraction performance, and inefficiency of long boreholes in soft coal seams, ensuring the mine’s safe and efficient production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在软煤层长钻孔保护中使用屏蔽管推广天然气开采技术
软煤层的固有特性及其机械环境使得长钻孔容易出现坍塌、变形和堵塞等问题。这些问题缩短了钻孔的使用寿命,阻碍了开采效率。本文通过分析软煤层中长钻孔的变形和破坏模式来应对这些挑战。本文研究了不同埋深的有保护和无保护钻孔周围的应力分布和变形特征。此外,它还建议使用筛管保护技术来改进瓦斯抽采和采矿作业,并在长坪煤矿进行了演示。结果表明,筛管保护技术大大改善了煤层钻孔的应力分布和变形稳定性。采用保护技术的两个钻孔的流量衰减系数分别降低了 48% 和 61%。保护率超过 90% 的钻孔抽采 50 天后,瓦斯浓度仍保持在 50% 以上,是未保护钻孔的 2.59 倍。该技术有效解决了软煤层长钻孔事故频发、抽采效果差、效率低等问题,确保了矿井的安全高效生产。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Processes
Processes Chemical Engineering-Bioengineering
CiteScore
5.10
自引率
11.40%
发文量
2239
审稿时长
14.11 days
期刊介绍: Processes (ISSN 2227-9717) provides an advanced forum for process related research in chemistry, biology and allied engineering fields. The journal publishes regular research papers, communications, letters, short notes and reviews. Our aim is to encourage researchers to publish their experimental, theoretical and computational results in as much detail as necessary. There is no restriction on paper length or number of figures and tables.
期刊最新文献
Box-Behnken Design for DPPH Free Radical Scavenging Activity Optimization from Microwave-Assisted Extraction of Polyphenolic Compounds from Agave lechuguilla Torr. Residues Particle Properties and Flotation Characteristics of Difficult-to-Float Lean Coal Damage Evaluation of Unconsolidated Sandstone Particle Migration Reservoir Based on Well–Seismic Combination Studying the Characteristics of Tank Oil Sludge Thermal Stability Improvement of Cu-Based Catalyst by Hydrophobic Modification in Methanol Synthesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1