Experimental Studies on Microscopic and Mechanical Properties of Nimonic 90 Superalloy Synthesized Using Powder Metallurgy

IF 2.2 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Engineering and Performance Pub Date : 2024-09-18 DOI:10.1007/s11665-024-10093-6
Geetika K. Salwan, Rayapati Subbarao, Subrata Mondal
{"title":"Experimental Studies on Microscopic and Mechanical Properties of Nimonic 90 Superalloy Synthesized Using Powder Metallurgy","authors":"Geetika K. Salwan, Rayapati Subbarao, Subrata Mondal","doi":"10.1007/s11665-024-10093-6","DOIUrl":null,"url":null,"abstract":"<p>Application of nickel-based superalloys is gradually rising in many sectors such as aerospace, automotive and marine industries due to their exceptional thermo-mechanical properties. Superalloys are predominantly fabricated by casting process. The pursuit of customized materials possessing with exceptional properties has driven the scholars to investigate the possibility of powder metallurgy for preparing them and assess their appropriateness to produce gas turbine components. This study focuses on the use of powder metallurgy approach for synthesizing Nimonic 90 superalloy. Physical properties such as density, microhardness and macrohardness are determined to validate with the standard sample. Mechanical properties like tensile strength and compressive strength are measured and analyzed. Dry sliding wear test is done to study the wear characteristics. Density and hardness of the material are close to that of standard alloy, which is due to the appropriate selection of sintering temperature and stay time. Measured values for the ultimate tensile strength, 0.2% offset yield strength and percentage of elongation are approximately 900 MPa, 386 MPa and 52%, respectively. In microscopic study, it is observed that the material has <i>γ</i>/<i>γ</i>’ phase because of precipitation hardening and solid solution strengthening. Findings establish the fundamental basis for near-net-shape manufacturing by powder metallurgy.</p>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"77 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11665-024-10093-6","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Application of nickel-based superalloys is gradually rising in many sectors such as aerospace, automotive and marine industries due to their exceptional thermo-mechanical properties. Superalloys are predominantly fabricated by casting process. The pursuit of customized materials possessing with exceptional properties has driven the scholars to investigate the possibility of powder metallurgy for preparing them and assess their appropriateness to produce gas turbine components. This study focuses on the use of powder metallurgy approach for synthesizing Nimonic 90 superalloy. Physical properties such as density, microhardness and macrohardness are determined to validate with the standard sample. Mechanical properties like tensile strength and compressive strength are measured and analyzed. Dry sliding wear test is done to study the wear characteristics. Density and hardness of the material are close to that of standard alloy, which is due to the appropriate selection of sintering temperature and stay time. Measured values for the ultimate tensile strength, 0.2% offset yield strength and percentage of elongation are approximately 900 MPa, 386 MPa and 52%, respectively. In microscopic study, it is observed that the material has γ/γ’ phase because of precipitation hardening and solid solution strengthening. Findings establish the fundamental basis for near-net-shape manufacturing by powder metallurgy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用粉末冶金法合成的镍铬 90 超合金的微观和力学性能实验研究
由于镍基超合金具有优异的热机械性能,其在航空航天、汽车和船舶等许多领域的应用正逐步增加。超级合金主要通过铸造工艺制造。对具有特殊性能的定制材料的追求促使学者们研究粉末冶金法制备超合金的可能性,并评估其是否适合用于生产燃气轮机部件。本研究的重点是使用粉末冶金法合成 Nimonic 90 超级合金。测定了密度、显微硬度和宏观硬度等物理性质,以便与标准样品进行验证。测量并分析了拉伸强度和压缩强度等机械性能。为了研究磨损特性,还进行了干滑动磨损试验。由于烧结温度和停留时间选择得当,材料的密度和硬度接近标准合金。极限拉伸强度、0.2% 偏移屈服强度和伸长率的测量值分别约为 900 兆帕、386 兆帕和 52%。在微观研究中,观察到由于沉淀硬化和固溶强化,该材料具有 γ/γ' 相。研究结果为利用粉末冶金法制造近净成形材料奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Engineering and Performance
Journal of Materials Engineering and Performance 工程技术-材料科学:综合
CiteScore
3.90
自引率
13.00%
发文量
1120
审稿时长
4.9 months
期刊介绍: ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance. The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication. Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered
期刊最新文献
Inverse Problem in the Stochastic Approach to Modeling of Phase Transformations in Steels during Cooling after Hot Forming Investigating Optimum Hot Working Window of 2205 Duplex Stainless Steel Using Modified Dynamic Material Modeling Effects of Defects and Shot Peening on Fatigue Properties of Additively Manufactured CoCrFeNiTiMo-Based High-Entropy Alloys Fracture Behavior of Hardfacing Alloy Coated Over Stainless Steel under Quasi-Static and Dynamic Loads Assessment of Mechanical and Slurry Erosive Behavior on Laser-Textured Stainless Steel (SS410)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1