{"title":"Mapping the Ethics of Generative AI: A Comprehensive Scoping Review","authors":"Thilo Hagendorff","doi":"10.1007/s11023-024-09694-w","DOIUrl":null,"url":null,"abstract":"<p>The advent of generative artificial intelligence and the widespread adoption of it in society engendered intensive debates about its ethical implications and risks. These risks often differ from those associated with traditional discriminative machine learning. To synthesize the recent discourse and map its normative concepts, we conducted a scoping review on the ethics of generative artificial intelligence, including especially large language models and text-to-image models. Our analysis provides a taxonomy of 378 normative issues in 19 topic areas and ranks them according to their prevalence in the literature. The study offers a comprehensive overview for scholars, practitioners, or policymakers, condensing the ethical debates surrounding fairness, safety, harmful content, hallucinations, privacy, interaction risks, security, alignment, societal impacts, and others. We discuss the results, evaluate imbalances in the literature, and explore unsubstantiated risk scenarios.</p>","PeriodicalId":51133,"journal":{"name":"Minds and Machines","volume":"2 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Minds and Machines","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11023-024-09694-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The advent of generative artificial intelligence and the widespread adoption of it in society engendered intensive debates about its ethical implications and risks. These risks often differ from those associated with traditional discriminative machine learning. To synthesize the recent discourse and map its normative concepts, we conducted a scoping review on the ethics of generative artificial intelligence, including especially large language models and text-to-image models. Our analysis provides a taxonomy of 378 normative issues in 19 topic areas and ranks them according to their prevalence in the literature. The study offers a comprehensive overview for scholars, practitioners, or policymakers, condensing the ethical debates surrounding fairness, safety, harmful content, hallucinations, privacy, interaction risks, security, alignment, societal impacts, and others. We discuss the results, evaluate imbalances in the literature, and explore unsubstantiated risk scenarios.
期刊介绍:
Minds and Machines, affiliated with the Society for Machines and Mentality, serves as a platform for fostering critical dialogue between the AI and philosophical communities. With a focus on problems of shared interest, the journal actively encourages discussions on the philosophical aspects of computer science.
Offering a global forum, Minds and Machines provides a space to debate and explore important and contentious issues within its editorial focus. The journal presents special editions dedicated to specific topics, invites critical responses to previously published works, and features review essays addressing current problem scenarios.
By facilitating a diverse range of perspectives, Minds and Machines encourages a reevaluation of the status quo and the development of new insights. Through this collaborative approach, the journal aims to bridge the gap between AI and philosophy, fostering a tradition of critique and ensuring these fields remain connected and relevant.