NG Siddesh Kumar, R Suresh, C Durga Prasad, L Shivaramu, NH Siddalingswamy
{"title":"Study on tool wears in turning Al2219, unhybrid and hybrid metal matrix nano composites by CCD design of experiment","authors":"NG Siddesh Kumar, R Suresh, C Durga Prasad, L Shivaramu, NH Siddalingswamy","doi":"10.1177/09544062241278127","DOIUrl":null,"url":null,"abstract":"In this article, Aluminum (Al2219) as a matrix, and particles of n-B<jats:sub>4</jats:sub>C and MoS<jats:sub>2</jats:sub> were chosen as reinforcements. By means of the stir casting technique, the unhybrid and hybrid nano metal matrix composites were prepared. The turning experiment was done through CCD design of experiment with TiN coated carbide insert using a Computer Numerically Controlled Lathe. Also, for turned inserts tool wear measurement was done using a Mitutoyo profile projector with digital readout. By ANOVA the significant contribution for tool wear of each parameter can be identified and the confirmation test is performed in sort to validate the tool wear results. Furthermore, the formation of chips during turning nano MMCs (unhybrid and hybrid) are studied for different feed rates ( f) and cutting speeds ( v) at 0.5 mm constant depth of cut. The outcome showed that both increases in cutting speed and feed rate increase the tool wear. For Al 2219, unhybrid and hybrid nano metal matrix composites feed rate is the important factor. The value of tool wear of the Al2219 matrix is minimal and for unhybrid nano composite is maximum. The leading wear mechanism in unhybrid nano composite is abrasion. Moreover, with the addition of 2%MoS<jats:sub>2</jats:sub> in the hybrid nanocomposite the tool wears is decreased. The development of Build Up Edge (BUE) was seen on the flank face of the cutting tool for hybrid nanocomposite at 0.5 mm depth of cut, (v = 114.64 m/min) and (f = 0.441 mm/rev). The obtained % error among the modeled and experimental values is <5% and it is well within the limit. The analysis of chip formation was studied for nanocomposites at lower as well as higher feed rates, cutting speeds, and constant depth of cut during turning.","PeriodicalId":20558,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","volume":"106 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544062241278127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this article, Aluminum (Al2219) as a matrix, and particles of n-B4C and MoS2 were chosen as reinforcements. By means of the stir casting technique, the unhybrid and hybrid nano metal matrix composites were prepared. The turning experiment was done through CCD design of experiment with TiN coated carbide insert using a Computer Numerically Controlled Lathe. Also, for turned inserts tool wear measurement was done using a Mitutoyo profile projector with digital readout. By ANOVA the significant contribution for tool wear of each parameter can be identified and the confirmation test is performed in sort to validate the tool wear results. Furthermore, the formation of chips during turning nano MMCs (unhybrid and hybrid) are studied for different feed rates ( f) and cutting speeds ( v) at 0.5 mm constant depth of cut. The outcome showed that both increases in cutting speed and feed rate increase the tool wear. For Al 2219, unhybrid and hybrid nano metal matrix composites feed rate is the important factor. The value of tool wear of the Al2219 matrix is minimal and for unhybrid nano composite is maximum. The leading wear mechanism in unhybrid nano composite is abrasion. Moreover, with the addition of 2%MoS2 in the hybrid nanocomposite the tool wears is decreased. The development of Build Up Edge (BUE) was seen on the flank face of the cutting tool for hybrid nanocomposite at 0.5 mm depth of cut, (v = 114.64 m/min) and (f = 0.441 mm/rev). The obtained % error among the modeled and experimental values is <5% and it is well within the limit. The analysis of chip formation was studied for nanocomposites at lower as well as higher feed rates, cutting speeds, and constant depth of cut during turning.
期刊介绍:
The Journal of Mechanical Engineering Science advances the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in engineering.