Michael J. Lavell, Ayden J. Kish, Andrew T. Sexton, Eugene S. Evans, Ibrahim Mohammad, Sara Gomez-Ramirez, William Scullin, Marcus Borscz, Sergey Pikuz, Thomas A. Mehlhorn, Max Tabak, Greg Ainsworth, Adam B. Sefkow
{"title":"A kinetic study of fusion burn waves in compressed deuterium–tritium and proton–boron plasmas","authors":"Michael J. Lavell, Ayden J. Kish, Andrew T. Sexton, Eugene S. Evans, Ibrahim Mohammad, Sara Gomez-Ramirez, William Scullin, Marcus Borscz, Sergey Pikuz, Thomas A. Mehlhorn, Max Tabak, Greg Ainsworth, Adam B. Sefkow","doi":"10.3389/fphy.2024.1440037","DOIUrl":null,"url":null,"abstract":"We present particle-in-cell simulations with Monte Carlo collisions of fusion burn waves in compressed deuterium–tritium and proton–boron plasmas. We study the energy balance in the one-dimensional expansion of a hot-spot by simulating Coulomb collisions, fusion reactions, and bremsstrahlung emission with a Monte Carlo model and inverse bremsstrahlung absorption using a new PIC model. This allows us to self-consistently capture the alpha particle heating and radiative losses in the expanding hot-spot and surrounding cold fuel. After verifying our model in a code-to-code comparison with both kinetic and fluid codes for the case of a deuterium–tritium hot-spot, we simulate the expansion of a proton–boron hot-spot initialized at 200 keV and 1,000 g/<jats:inline-formula><mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"><mml:msup><mml:mrow><mml:mtext>cm</mml:mtext></mml:mrow><mml:mrow><mml:mn>3</mml:mn></mml:mrow></mml:msup></mml:math></jats:inline-formula>. Our model predicts that energy radiated by the hot-spot is recaptured by the surrounding high-density opaque fuel reducing the expansion work done by the propagating burn wave. As a result, we find the net fusion energy produced over the course of $20$∼ps is twice the initial hot-spot energy independent of whether radiation physics is included.","PeriodicalId":12507,"journal":{"name":"Frontiers in Physics","volume":"10 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fphy.2024.1440037","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We present particle-in-cell simulations with Monte Carlo collisions of fusion burn waves in compressed deuterium–tritium and proton–boron plasmas. We study the energy balance in the one-dimensional expansion of a hot-spot by simulating Coulomb collisions, fusion reactions, and bremsstrahlung emission with a Monte Carlo model and inverse bremsstrahlung absorption using a new PIC model. This allows us to self-consistently capture the alpha particle heating and radiative losses in the expanding hot-spot and surrounding cold fuel. After verifying our model in a code-to-code comparison with both kinetic and fluid codes for the case of a deuterium–tritium hot-spot, we simulate the expansion of a proton–boron hot-spot initialized at 200 keV and 1,000 g/cm3. Our model predicts that energy radiated by the hot-spot is recaptured by the surrounding high-density opaque fuel reducing the expansion work done by the propagating burn wave. As a result, we find the net fusion energy produced over the course of $20$∼ps is twice the initial hot-spot energy independent of whether radiation physics is included.
期刊介绍:
Frontiers in Physics publishes rigorously peer-reviewed research across the entire field, from experimental, to computational and theoretical physics. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, engineers and the public worldwide.