Cavity-Enhanced Optical Manipulation of Antiferromagnetic Magnon-Pairs

Tahereh Sadat Parvini, Anna-Luisa E. Romling, Sanchar Sharma, Silvia Viola Kusminskiy
{"title":"Cavity-Enhanced Optical Manipulation of Antiferromagnetic Magnon-Pairs","authors":"Tahereh Sadat Parvini, Anna-Luisa E. Romling, Sanchar Sharma, Silvia Viola Kusminskiy","doi":"arxiv-2409.10659","DOIUrl":null,"url":null,"abstract":"The optical manipulation of magnon states in antiferromagnets (AFMs) holds\nsignificant potential for advancing AFM-based computing devices. In particular,\ntwo-magnon Raman scattering processes are known to generate entangled\nmagnon-pairs with opposite momenta. We propose to harness the dynamical\nbackaction of a driven optical cavity coupled to these processes, to obtain\nsteady states of squeezed magnon-pairs, represented by squeezed Perelomov\ncoherent states. The system's dynamics can be controlled by the strength and\ndetuning of the optical drive and by the cavity losses. In the limit of a fast\n(or lossy) cavity, we obtain an effective equation of motion in the Perelomov\nrepresentation, in terms of a light-induced frequency shift and a collective\ninduced dissipation which sign can be controlled by the detuning of the drive.\nIn the red-detuned regime, a critical power threshold defines a region where\nmagnon-pair operators exhibit squeezing, a resource for quantum information,\nmarked by distinct attractor points. Beyond this threshold, the system evolves\nto limit cycles of magnon-pairs. In contrast, for resonant and blue detuning\nregimes, the magnon-pair dynamics exhibit limit cycles and chaotic phases,\nrespectively, for low and high pump powers. Observing strongly squeezed states,\nauto-oscillating limit cycles, and chaos in this platform presents promising\nopportunities for future quantum information processing, communication\ndevelopments, and materials studies.","PeriodicalId":501137,"journal":{"name":"arXiv - PHYS - Mesoscale and Nanoscale Physics","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.10659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The optical manipulation of magnon states in antiferromagnets (AFMs) holds significant potential for advancing AFM-based computing devices. In particular, two-magnon Raman scattering processes are known to generate entangled magnon-pairs with opposite momenta. We propose to harness the dynamical backaction of a driven optical cavity coupled to these processes, to obtain steady states of squeezed magnon-pairs, represented by squeezed Perelomov coherent states. The system's dynamics can be controlled by the strength and detuning of the optical drive and by the cavity losses. In the limit of a fast (or lossy) cavity, we obtain an effective equation of motion in the Perelomov representation, in terms of a light-induced frequency shift and a collective induced dissipation which sign can be controlled by the detuning of the drive. In the red-detuned regime, a critical power threshold defines a region where magnon-pair operators exhibit squeezing, a resource for quantum information, marked by distinct attractor points. Beyond this threshold, the system evolves to limit cycles of magnon-pairs. In contrast, for resonant and blue detuning regimes, the magnon-pair dynamics exhibit limit cycles and chaotic phases, respectively, for low and high pump powers. Observing strongly squeezed states, auto-oscillating limit cycles, and chaos in this platform presents promising opportunities for future quantum information processing, communication developments, and materials studies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
反铁磁磁子对的腔增强光学操纵
对反铁磁体(AFMs)中的磁子态进行光学操纵,对于推进基于 AFM 的计算设备具有重大潜力。特别是,已知双磁子拉曼散射过程会产生具有相反力矩的纠缠磁子对。我们建议利用与这些过程耦合的驱动光腔的动态反作用,获得以挤压佩列洛莫夫相干态为代表的挤压磁子对的稳态。系统的动态可由光驱动的强度和调谐以及腔损耗来控制。在快速(或有损耗)腔体的限制下,我们得到了一个有效的佩列洛莫夫运动方程,即光诱导的频移和集体诱导的耗散,其符号可由驱动器的失谐来控制。在红色失谐体系中,临界功率阈值定义了一个磁对算子表现出挤压的区域,这是量子信息的一种资源,以不同的吸引点为标志。超过这个临界点,系统就会演化成磁子对的极限循环。相反,在共振和蓝色失谐状态下,磁子对动力学在低泵功率和高泵功率时分别表现出极限循环和混沌阶段。在该平台中观察到强挤压态、自动振荡极限循环和混沌,为未来的量子信息处理、通信开发和材料研究提供了大有可为的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Light-induced Nonlinear Resonant Spin Magnetization Borophane as substrate for adsorption of He-4: A journey across dimensionality Memory resistor based in GaAs 2D-bilayers: In and out of equilibrium Three-dimensional valley-contrasting sound How does Goldene Stack?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1