Silvia Portale, Margrethe Felter, Angeliki Zisi, Calin Constantin Steindal, Lavinia de Ferri, Paolo Mazzoleni, Germana Barone
{"title":"Preliminary Study of Stone Sawing Sludges-based Alkali Activated Materials (AAMs) for the Conservation of Archaeological Ceramics","authors":"Silvia Portale, Margrethe Felter, Angeliki Zisi, Calin Constantin Steindal, Lavinia de Ferri, Paolo Mazzoleni, Germana Barone","doi":"10.1007/s12371-024-01010-3","DOIUrl":null,"url":null,"abstract":"<p>This paper presents research into the feasibility of using stone sawing sludge-based Alkali Activated Materials (AAMs) for conservation of Cultural Heritage. Sawing sludges are a stone processing waste product resulting from the mixing of rock powder with the water used to cool down the cutting blades. The chemical composition of the sawing sludges, when aluminosilicatic, is suitable for acting as a precursor to produce AAMs. AAMs are known for their low environmental impact and versatility since their existence is drawn from recycling waste materials. One of their possible applications is in the conservation of Cultural Heritage objects. This work presents a preliminary investigation into three sawing sludge-based AAMs with different mineralogical compositions and contributes to formulating guidelines for applying them as fillers on modern and archaeological ceramic pottery based on the evaluation of their workability, appearance and physical properties over time from the moment of application and up to 30 days. Dynamic Vapor Sorption and X-Ray Diffraction results provided an overview of the structural and mineralogical changes under high RH conditions, where the tested AAMs showed a type II isotherm curve, as expected for concrete-like materials, as well as disappearance of thermonatrite after one isothermal cycle. Ultrasonic Pulse Velocity test demonstrated the general homogeneity of the AAMs despite the lower velocity exhibited by one of the formulations, probably due to its internal pore distribution and possible presence of microstratification. The Oddy tests, application tests and colourimetric measurements evidenced the advantages and weaknesses of the AAMs, with overall encouraging results ensuing investment in further in-depth studies of these innovative conservation materials in view of their future use in the field of conservation of Cultural Heritage as a result of a circular economy model.</p>","PeriodicalId":48924,"journal":{"name":"Geoheritage","volume":"1 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoheritage","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12371-024-01010-3","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents research into the feasibility of using stone sawing sludge-based Alkali Activated Materials (AAMs) for conservation of Cultural Heritage. Sawing sludges are a stone processing waste product resulting from the mixing of rock powder with the water used to cool down the cutting blades. The chemical composition of the sawing sludges, when aluminosilicatic, is suitable for acting as a precursor to produce AAMs. AAMs are known for their low environmental impact and versatility since their existence is drawn from recycling waste materials. One of their possible applications is in the conservation of Cultural Heritage objects. This work presents a preliminary investigation into three sawing sludge-based AAMs with different mineralogical compositions and contributes to formulating guidelines for applying them as fillers on modern and archaeological ceramic pottery based on the evaluation of their workability, appearance and physical properties over time from the moment of application and up to 30 days. Dynamic Vapor Sorption and X-Ray Diffraction results provided an overview of the structural and mineralogical changes under high RH conditions, where the tested AAMs showed a type II isotherm curve, as expected for concrete-like materials, as well as disappearance of thermonatrite after one isothermal cycle. Ultrasonic Pulse Velocity test demonstrated the general homogeneity of the AAMs despite the lower velocity exhibited by one of the formulations, probably due to its internal pore distribution and possible presence of microstratification. The Oddy tests, application tests and colourimetric measurements evidenced the advantages and weaknesses of the AAMs, with overall encouraging results ensuing investment in further in-depth studies of these innovative conservation materials in view of their future use in the field of conservation of Cultural Heritage as a result of a circular economy model.
期刊介绍:
The Geoheritage journal is an international journal dedicated to discussing all aspects of our global geoheritage, both in situ and portable. The journal will invite all contributions on the conservation of sites and materials - use, protection and practical heritage management - as well as its interpretation through education, training and tourism.
The journal wishes to cover all aspects of geoheritage and its protection. Key topics are:
- Identification, characterisation, quantification and management of geoheritage;
- Geodiversity and geosites;
- On-site science, geological and geomorphological research:
- Global scientific heritage - key scientific geosites, GSSPs, stratotype conservation
and management;
- Scientific research and education, and the promotion of the geosciences thereby;
- Conventions, statute and legal instruments, national and international;
- Integration of biodiversity and geodiversity in nature conservation and land-use
policies;
- Geological heritage and Environmental Impact Assessment studies;
- Geological heritage, sustainable development, community action, practical initiatives and tourism;
- Geoparks: creation, management and outputs;
- Conservation in the natural world, Man-made and natural impacts, climate change;
- Geotourism definitions, methodologies, and case studies;
- International mechanisms for conservation and popularisation - World Heritage Sites,
National Parks etc.;
- Materials, data and people important in the history of science, museums, collections
and all portable geoheritage;
- Education and training of geoheritage specialists;
- Pedagogical use of geological heritage - publications, teaching media, trails, centres,
on-site museums;
- Linking the United Nations Decade of Education for Sustainable Development (2005- 2014) with geoconservation.