Ankita Pal, Nanda Gopala Krishna, Ravi Shankar A. and John Philip
{"title":"Localized Surface Modification during Alternating Current Scanning Electrochemical Microscopy: Origin and Mechanism","authors":"Ankita Pal, Nanda Gopala Krishna, Ravi Shankar A. and John Philip","doi":"10.1149/1945-7111/ad7890","DOIUrl":null,"url":null,"abstract":"In the current study, we report for the first time the observation of unintended localized surface modification on commercially pure aluminum (Al) during an alternating current scanning electrochemical microscopy (AC-SECM) analysis, its origin, and the probable mechanism responsible for it. Application of an AC perturbation potential (∼100 mV amplitude at ∼100 kHz frequency) to the Platinum ultramicroelectrode (Pt UME), during AC-SECM in acidic, neutral chloride, tap water, and alkaline electrolytes was found to cause surface modification on the scanned region of Al. An increase in the local pH of the electrolyte between the UME and the Al substrate, irrespective of the electrolyte pH (3–11) and UME biasing conditions, led to the local surface modification. The reason for the enhancement of local pH is attributed to the occurrence of higher rates of cathodic reduction reactions than that of anodic oxidation reactions. The reduction of dissolved oxygen/protons/water in the electrolytes led to the generation or consumption of OH−/H+ ions, respectively, and thus increased the pH, whereas the oxidation of Pt UME/Al surfaces decreased the pH with the generation of H+ or consumption of OH− ions. These results contribute significantly to accurately analyzing Al and its alloys using the AC-SECM technique.","PeriodicalId":17364,"journal":{"name":"Journal of The Electrochemical Society","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Electrochemical Society","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1149/1945-7111/ad7890","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
In the current study, we report for the first time the observation of unintended localized surface modification on commercially pure aluminum (Al) during an alternating current scanning electrochemical microscopy (AC-SECM) analysis, its origin, and the probable mechanism responsible for it. Application of an AC perturbation potential (∼100 mV amplitude at ∼100 kHz frequency) to the Platinum ultramicroelectrode (Pt UME), during AC-SECM in acidic, neutral chloride, tap water, and alkaline electrolytes was found to cause surface modification on the scanned region of Al. An increase in the local pH of the electrolyte between the UME and the Al substrate, irrespective of the electrolyte pH (3–11) and UME biasing conditions, led to the local surface modification. The reason for the enhancement of local pH is attributed to the occurrence of higher rates of cathodic reduction reactions than that of anodic oxidation reactions. The reduction of dissolved oxygen/protons/water in the electrolytes led to the generation or consumption of OH−/H+ ions, respectively, and thus increased the pH, whereas the oxidation of Pt UME/Al surfaces decreased the pH with the generation of H+ or consumption of OH− ions. These results contribute significantly to accurately analyzing Al and its alloys using the AC-SECM technique.
期刊介绍:
The Journal of The Electrochemical Society (JES) is the leader in the field of solid-state and electrochemical science and technology. This peer-reviewed journal publishes an average of 450 pages of 70 articles each month. Articles are posted online, with a monthly paper edition following electronic publication. The ECS membership benefits package includes access to the electronic edition of this journal.