{"title":"The effect of slip parameter in an axisymmetric oscillatory Stokes flow","authors":"Dadi Dimple S. S., B. Sri Padmavati","doi":"10.1063/5.0226315","DOIUrl":null,"url":null,"abstract":"A general solution of Stokes equations for the problem of an axisymmetric oscillatory flow of an incompressible, viscous fluid past a sphere satisfying general boundary conditions is obtained. The behavior of the magnitude of drag is observed with the variation of the slip parameter. Some more interesting behaviors are detailed, and several existing results pertaining to steady flows and flows with rigid and shear free boundary conditions are recovered as special cases. The corresponding results are discussed for four different axisymmetric oscillatory Stokes flows, namely, uniform flow, flows generated due to a dipole, a source, and a Stokeslet. A few interesting streamline patterns like formation, elongation, and disappearance of viscous eddies in the vicinity of the sphere with a periodic reversal of the flow are observed at different frequencies for different values of the slip parameter.","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"21 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0226315","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
A general solution of Stokes equations for the problem of an axisymmetric oscillatory flow of an incompressible, viscous fluid past a sphere satisfying general boundary conditions is obtained. The behavior of the magnitude of drag is observed with the variation of the slip parameter. Some more interesting behaviors are detailed, and several existing results pertaining to steady flows and flows with rigid and shear free boundary conditions are recovered as special cases. The corresponding results are discussed for four different axisymmetric oscillatory Stokes flows, namely, uniform flow, flows generated due to a dipole, a source, and a Stokeslet. A few interesting streamline patterns like formation, elongation, and disappearance of viscous eddies in the vicinity of the sphere with a periodic reversal of the flow are observed at different frequencies for different values of the slip parameter.
期刊介绍:
Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to:
-Acoustics
-Aerospace and aeronautical flow
-Astrophysical flow
-Biofluid mechanics
-Cavitation and cavitating flows
-Combustion flows
-Complex fluids
-Compressible flow
-Computational fluid dynamics
-Contact lines
-Continuum mechanics
-Convection
-Cryogenic flow
-Droplets
-Electrical and magnetic effects in fluid flow
-Foam, bubble, and film mechanics
-Flow control
-Flow instability and transition
-Flow orientation and anisotropy
-Flows with other transport phenomena
-Flows with complex boundary conditions
-Flow visualization
-Fluid mechanics
-Fluid physical properties
-Fluid–structure interactions
-Free surface flows
-Geophysical flow
-Interfacial flow
-Knudsen flow
-Laminar flow
-Liquid crystals
-Mathematics of fluids
-Micro- and nanofluid mechanics
-Mixing
-Molecular theory
-Nanofluidics
-Particulate, multiphase, and granular flow
-Processing flows
-Relativistic fluid mechanics
-Rotating flows
-Shock wave phenomena
-Soft matter
-Stratified flows
-Supercritical fluids
-Superfluidity
-Thermodynamics of flow systems
-Transonic flow
-Turbulent flow
-Viscous and non-Newtonian flow
-Viscoelasticity
-Vortex dynamics
-Waves