MonoVisual3DFilter: 3D tomatoes’ localisation with monocular cameras using histogram filters

IF 1.9 4区 计算机科学 Q3 ROBOTICS Robotica Pub Date : 2024-09-18 DOI:10.1017/s0263574724000936
Sandro Augusto Costa Magalhães, Filipe Neves dos Santos, António Paulo Moreira, Jorge Manuel Miranda Dias
{"title":"MonoVisual3DFilter: 3D tomatoes’ localisation with monocular cameras using histogram filters","authors":"Sandro Augusto Costa Magalhães, Filipe Neves dos Santos, António Paulo Moreira, Jorge Manuel Miranda Dias","doi":"10.1017/s0263574724000936","DOIUrl":null,"url":null,"abstract":"Performing tasks in agriculture, such as fruit monitoring or harvesting, requires perceiving the objects’ spatial position. RGB-D cameras are limited under open-field environments due to lightning interferences. So, in this study, we state to answer the research question: “How can we use and control monocular sensors to perceive objects’ position in the 3D task space?” Towards this aim, we approached histogram filters (Bayesian discrete filters) to estimate the position of tomatoes in the tomato plant through the algorithm MonoVisual3DFilter. Two kernel filters were studied: the square kernel and the Gaussian kernel. The implemented algorithm was essayed in simulation, with and without Gaussian noise and random noise, and in a testbed at laboratory conditions. The algorithm reported a mean absolute error lower than 10 mm in simulation and 20 mm in the testbed at laboratory conditions with an assessing distance of about 0.5 m. So, the results are viable for real environments and should be improved at closer distances.","PeriodicalId":49593,"journal":{"name":"Robotica","volume":"22 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotica","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s0263574724000936","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Performing tasks in agriculture, such as fruit monitoring or harvesting, requires perceiving the objects’ spatial position. RGB-D cameras are limited under open-field environments due to lightning interferences. So, in this study, we state to answer the research question: “How can we use and control monocular sensors to perceive objects’ position in the 3D task space?” Towards this aim, we approached histogram filters (Bayesian discrete filters) to estimate the position of tomatoes in the tomato plant through the algorithm MonoVisual3DFilter. Two kernel filters were studied: the square kernel and the Gaussian kernel. The implemented algorithm was essayed in simulation, with and without Gaussian noise and random noise, and in a testbed at laboratory conditions. The algorithm reported a mean absolute error lower than 10 mm in simulation and 20 mm in the testbed at laboratory conditions with an assessing distance of about 0.5 m. So, the results are viable for real environments and should be improved at closer distances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MonoVisual3DFilter:使用直方图滤波器用单目摄像头进行三维番茄定位
在农业领域执行水果监测或收获等任务时,需要感知物体的空间位置。由于雷电干扰,RGB-D 摄像机在露天环境下受到限制。因此,在本研究中,我们要回答的研究问题是"我们如何使用和控制单目传感器来感知物体在三维任务空间中的位置?为此,我们采用直方图滤波器(贝叶斯离散滤波器),通过 MonoVisual3DFilter 算法估计番茄植株中番茄的位置。研究了两种核过滤器:方形核和高斯核。在有高斯噪声和随机噪声、无高斯噪声的情况下,以及在实验室条件下的测试平台上,对所实施的算法进行了模拟试验。该算法的平均绝对误差在模拟中低于 10 毫米,在实验室条件下的试验台中低于 20 毫米,评估距离约为 0.5 米。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Robotica
Robotica 工程技术-机器人学
CiteScore
4.50
自引率
22.20%
发文量
181
审稿时长
9.9 months
期刊介绍: Robotica is a forum for the multidisciplinary subject of robotics and encourages developments, applications and research in this important field of automation and robotics with regard to industry, health, education and economic and social aspects of relevance. Coverage includes activities in hostile environments, applications in the service and manufacturing industries, biological robotics, dynamics and kinematics involved in robot design and uses, on-line robots, robot task planning, rehabilitation robotics, sensory perception, software in the widest sense, particularly in respect of programming languages and links with CAD/CAM systems, telerobotics and various other areas. In addition, interest is focused on various Artificial Intelligence topics of theoretical and practical interest.
期刊最新文献
3D dynamics and control of a snake robot in uncertain underwater environment An application of natural matrices to the dynamic balance problem of planar parallel manipulators Control of stance-leg motion and zero-moment point for achieving perfect upright stationary state of rimless wheel type walker with parallel linkage legs Trajectory tracking control of a mobile robot using fuzzy logic controller with optimal parameters High accuracy hybrid kinematic modeling for serial robotic manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1