{"title":"Azamollugin, a mollugin derivative, has inhibitory activity on MyD88- and TRIF-dependent pathways","authors":"Yuki Nakajima, Hitomi Nishino, Kazunori Takahashi, Alfarius Eko Nugroho, Yusuke Hirasawa, Toshio Kaneda, Hiroshi Morita","doi":"10.1007/s11418-024-01842-x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Previously, we reported that azamollugin, an aza-derivative of mollugin, exhibited potent inhibitory activity on NO production in LPS-stimulated RAW 264.7 cells. Further investigations in this study revealed that azamollugin not only suppressed iNOS gene expression regulated by NF-κB, but also inhibited LPS-induced IFN-β expression, which is known to be regulated by IRF3. Azamollugin exhibited an inhibitory activity on LPS-induced IRAK1 activation, suggesting inhibitory effect on the MyD88-dependent pathway. Furthermore, azamollugin inhibited LPS-induced phosphorylation of IRF3 and its upstream factor, TBK1/IKKε, suggesting an inhibitory effect on the TRIF-dependent pathway via TLR4. In addition, azamollugin also suppressed poly(I:C)-induced phosphorylation of TBK1 and IRF3, suggesting an inhibitory effect on the TRIF-dependent pathway via TLR3. These results suggest that azamollugin has inhibitory activity against both the MyD88-dependent and TRIF-dependent pathways, respectively.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>\n","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":"8 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11418-024-01842-x","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Previously, we reported that azamollugin, an aza-derivative of mollugin, exhibited potent inhibitory activity on NO production in LPS-stimulated RAW 264.7 cells. Further investigations in this study revealed that azamollugin not only suppressed iNOS gene expression regulated by NF-κB, but also inhibited LPS-induced IFN-β expression, which is known to be regulated by IRF3. Azamollugin exhibited an inhibitory activity on LPS-induced IRAK1 activation, suggesting inhibitory effect on the MyD88-dependent pathway. Furthermore, azamollugin inhibited LPS-induced phosphorylation of IRF3 and its upstream factor, TBK1/IKKε, suggesting an inhibitory effect on the TRIF-dependent pathway via TLR4. In addition, azamollugin also suppressed poly(I:C)-induced phosphorylation of TBK1 and IRF3, suggesting an inhibitory effect on the TRIF-dependent pathway via TLR3. These results suggest that azamollugin has inhibitory activity against both the MyD88-dependent and TRIF-dependent pathways, respectively.
期刊介绍:
The Journal of Natural Medicines is an international journal publishing original research in naturally occurring medicines and their related foods and cosmetics. It covers:
-chemistry of natural products
-biochemistry of medicinal plants
-pharmacology of natural products and herbs, including Kampo formulas and traditional herbs
-botanical anatomy
-cultivation of medicinal plants.
The journal accepts Original Papers, Notes, Rapid Communications and Natural Resource Letters. Reviews and Mini-Reviews are generally invited.