Dendrobium nobile Lindl. alkaloids (DNLA) are considered important active ingredients of Dendrobium, which have a variety of pharmacological functions. Recent studies indicate that DNLA has beneficial activity in acute liver injury. However, the specific mechanism by which DNLA produces liver protective effects is stills unclear. This study was designed to determine whether regulation of autophagy is involved in the mode of action of DNLA in liver protection. Using CCl4-induced acute liver injury (ALI) and cell culture models, the molecular mechanism of DNLA-mediated autophagy regulation was studied. The results showed that DNLA significantly improved CCl4-induced liver damage and oxidative stress, which was confirmed in AML-12 cells. DNLA promoted autophagy in cells treated with CCl4, manifested by reduced protein expressions of p62 and LC3-II. Fluorescence imaging showed a decrease in the number of autophagosomes in AML-12 cells transfected with mCherry-GFP-LC3B. In addition, DNLA inhibited lysosomal membrane permeabilization by upregulating lysosomal associated membrane protein-1 (LAMP1), thereby promoting autophagy, preventing CCl4-induced mitochondrial dysfunction, and reducing the production of mitochondrial reactive oxygen species (ROS). While pretreatment of cells with lysosomal inhibitor chloroquine weakened mitochondrial protection elicited by DNLA, overexpression of mitochondrial-targeted SOD2 in AML-12 cells significantly blocked CCl4 induced downregulation of LAMP1, thereby improving lysosome integrity and promoting lysosome dependent autophagy, suggesting that there may exist a bidirectional regulation between mitochondrial ROS and lysosome-autophagy activation. Collectively, these results demonstrated that DNLA can protect the liver injury mediated by dysregulation of lysosome-autophagy process through promoting ROS-lysosome-autophagy axis and improving mitochondrial damage.
{"title":"Dendrobium nobile Lindl. alkaloids protect CCl<sub>4</sub>-induced acute liver injury via upregulating LAMP1 expression and activating autophagy flux.","authors":"Nan Nan, Yonggang Yang, Xiaolong Fu, Siting Xian, Qin Wu, Jingshan Shi, Shaoyu Zhou","doi":"10.1007/s11418-024-01852-9","DOIUrl":"https://doi.org/10.1007/s11418-024-01852-9","url":null,"abstract":"<p><p>Dendrobium nobile Lindl. alkaloids (DNLA) are considered important active ingredients of Dendrobium, which have a variety of pharmacological functions. Recent studies indicate that DNLA has beneficial activity in acute liver injury. However, the specific mechanism by which DNLA produces liver protective effects is stills unclear. This study was designed to determine whether regulation of autophagy is involved in the mode of action of DNLA in liver protection. Using CCl<sub>4</sub>-induced acute liver injury (ALI) and cell culture models, the molecular mechanism of DNLA-mediated autophagy regulation was studied. The results showed that DNLA significantly improved CCl<sub>4</sub>-induced liver damage and oxidative stress, which was confirmed in AML-12 cells. DNLA promoted autophagy in cells treated with CCl<sub>4</sub>, manifested by reduced protein expressions of p62 and LC3-II. Fluorescence imaging showed a decrease in the number of autophagosomes in AML-12 cells transfected with mCherry-GFP-LC3B. In addition, DNLA inhibited lysosomal membrane permeabilization by upregulating lysosomal associated membrane protein-1 (LAMP1), thereby promoting autophagy, preventing CCl<sub>4</sub>-induced mitochondrial dysfunction, and reducing the production of mitochondrial reactive oxygen species (ROS). While pretreatment of cells with lysosomal inhibitor chloroquine weakened mitochondrial protection elicited by DNLA, overexpression of mitochondrial-targeted SOD2 in AML-12 cells significantly blocked CCl<sub>4</sub> induced downregulation of LAMP1, thereby improving lysosome integrity and promoting lysosome dependent autophagy, suggesting that there may exist a bidirectional regulation between mitochondrial ROS and lysosome-autophagy activation. Collectively, these results demonstrated that DNLA can protect the liver injury mediated by dysregulation of lysosome-autophagy process through promoting ROS-lysosome-autophagy axis and improving mitochondrial damage.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142638272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Four new bisindole alkaloids, cathagines A (1)-D (4) consisting of an aspidosperma and the fused tetracyclic 3-spirooxindole derived from an iboga type skeleton were isolated from the whole plant of Catharanthus roseus. The structures including absolute stereochemistry were elucidated on the basis of 2D NMR data and CD spectra. Cathagine B (2) showed moderate anti-malarial activity against Plasmodium falciparum 3D7.
从长春花全株中分离出了四种新的双吲哚生物碱,即由一种表吲哚和融合的四环 3-螺氧吲哚组成的长春花碱 A (1)-D (4),它们都来自一种伊勃加类型的骨架。根据二维核磁共振数据和 CD 光谱阐明了它们的结构,包括绝对立体化学结构。Cathagine B (2) 对恶性疟原虫 3D7 具有中等抗疟活性。
{"title":"Cathagines A-D, new bisindole alkaloids from Catharanthus roseus.","authors":"Yusuke Hirasawa, Chiaki Kasagi, Erika Koyama, Hitomi Myojin, Takahiro Tougan, Toshihiro Horii, Nahoko Uchiyama, Toshio Kaneda, Hiroshi Morita","doi":"10.1007/s11418-024-01857-4","DOIUrl":"https://doi.org/10.1007/s11418-024-01857-4","url":null,"abstract":"<p><p>Four new bisindole alkaloids, cathagines A (1)-D (4) consisting of an aspidosperma and the fused tetracyclic 3-spirooxindole derived from an iboga type skeleton were isolated from the whole plant of Catharanthus roseus. The structures including absolute stereochemistry were elucidated on the basis of 2D NMR data and CD spectra. Cathagine B (2) showed moderate anti-malarial activity against Plasmodium falciparum 3D7.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142611771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-08DOI: 10.1007/s11418-024-01858-3
Hitoshi Kamauchi, Mayu Tanaka, Kakeru Koyama, Yuka Kiba, Masashi Kitamura, Yoshiaki Sugita
Two novel aromatic polyketides, penicanesins J and K (1, 2), were isolated from the marine-derived fungus Didymella aeria, along with the known compound integrastatin B (3). The structures of the new compounds were determined by NMR spectroscopy and synthetic methods. The isolated compounds were tested for monoamine oxidase (MAO) B inhibition, anti-amyloid beta (Aβ) aggregation, and protective activity against H2O2-induced cell death in human neuroblastoma SH-SY5Y cells. Integrastatin B (3) showed potential activity for inhibition of Aβ aggregation and protection against H2O2-induced cell death.
{"title":"Aromatic polyketides isolated from the marine-derived fungus Didymella aeria and their neuroprotective activity.","authors":"Hitoshi Kamauchi, Mayu Tanaka, Kakeru Koyama, Yuka Kiba, Masashi Kitamura, Yoshiaki Sugita","doi":"10.1007/s11418-024-01858-3","DOIUrl":"https://doi.org/10.1007/s11418-024-01858-3","url":null,"abstract":"<p><p>Two novel aromatic polyketides, penicanesins J and K (1, 2), were isolated from the marine-derived fungus Didymella aeria, along with the known compound integrastatin B (3). The structures of the new compounds were determined by NMR spectroscopy and synthetic methods. The isolated compounds were tested for monoamine oxidase (MAO) B inhibition, anti-amyloid beta (Aβ) aggregation, and protective activity against H<sub>2</sub>O<sub>2</sub>-induced cell death in human neuroblastoma SH-SY5Y cells. Integrastatin B (3) showed potential activity for inhibition of Aβ aggregation and protection against H<sub>2</sub>O<sub>2</sub>-induced cell death.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Inflammation is a vital and normal physiological response; however, excessive inflammation can contribute to the development of various diseases. Artemisia sieversiana, a traditional Chinese medicinal plant, contains a variety of chemical compounds. One such compound, 3-oxo-11αH-germacra-1(10)E,4Z-dien-12,6α-olide, a germacranolide sesquiterpenoid (germacranolide, GMO), has not been thoroughly investigated regarding its potential anti-inflammatory properties. In this study, the anti-inflammatory and antioxidant properties of GMO were investigated for the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. It was demonstrated that GMO effectively suppressed the production of inflammatory mediators, decreased the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in RAW264.7 cells. Additionally, GMO exhibited the capacity to mitigate oxidative damage induced by LPS, as indicated by assessments of reactive oxygen species and mitochondrial membrane potential. In summary, GMO possesses significant anti-inflammatory effects by modulating the NF-κB/MAPK pathway and antioxidant effects by regulating ROS production.
{"title":"3-Oxo-11αH-germacra-1(10) E,4Z-dien-12,6α-olide, a sesquiterpene from Artemisia sieversiana, attenuates lipopolysaccharide-induced inflammation via NF-κB/MAPK pathways and oxidative stress via ROS pathway in RAW264.7 cells.","authors":"Qianqian Ren, Lili Wang, Xin Wang, Xiaoran Min, Xiling Dai, Guozheng Huang, Jianguo Cao","doi":"10.1007/s11418-024-01854-7","DOIUrl":"https://doi.org/10.1007/s11418-024-01854-7","url":null,"abstract":"<p><p>Inflammation is a vital and normal physiological response; however, excessive inflammation can contribute to the development of various diseases. Artemisia sieversiana, a traditional Chinese medicinal plant, contains a variety of chemical compounds. One such compound, 3-oxo-11αH-germacra-1(10)E,4Z-dien-12,6α-olide, a germacranolide sesquiterpenoid (germacranolide, GMO), has not been thoroughly investigated regarding its potential anti-inflammatory properties. In this study, the anti-inflammatory and antioxidant properties of GMO were investigated for the lipopolysaccharide (LPS)-induced inflammation in RAW264.7 cells. It was demonstrated that GMO effectively suppressed the production of inflammatory mediators, decreased the phosphorylation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) in RAW264.7 cells. Additionally, GMO exhibited the capacity to mitigate oxidative damage induced by LPS, as indicated by assessments of reactive oxygen species and mitochondrial membrane potential. In summary, GMO possesses significant anti-inflammatory effects by modulating the NF-κB/MAPK pathway and antioxidant effects by regulating ROS production.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Currently, there are no effective prophylactic or therapeutic drugs for the treatment of paclitaxel (PTX)-induced peripheral neuropathic pain (PTX-PNP), highlighting the urgent need for the development of effective prophylactic and therapeutic drugs. In this study, we initially compared the efficacy of Ephedra Herb extract (EHE) with that of ephedrine alkaloids-free Ephedra Herb extract (EFE), which lacked ephedrine alkaloids (EAs)-associated side effects, against the onset of PTX-induced mechanical allodynia, thermal hyperalgesia, and cold allodynia in mice. EHE and EFE demonstrated comparable preventive effects on the PTX-PNP in a dose-dependent manner. These results indicated that the preventive properties of EHE were independent of the EAs. Since elderly people are overwhelmingly more susceptible to developing cancer, we considered that EFE has greater benefits than EHE, so we conducted a study focused on the effects of EFE. EFE showed dose-dependent preventive effects on the onset of PTX-PNP. As a result of detailed investigation, coadministration of PTX and EFE (Co-EFE) was more effective than preadministration of EFE alone (Pre-EFE). And the effects of Co-EFE was same with the effect of preadministration of EFE and then coadministration of PTX and EFE (P&C-EFE). Additionally, Co-EFE after the onset of PTX-PNP improved PTX-induced mechanical allodynia, thermal hyperalgesia, and cold allodynia, confirming the therapeutic efficacy of EFE on PTX-PNP. In contrast, goshajinkigan, a Kampo medicine, and diclofenac, a non-steroidal anti-inflammatory drug, showed minimal therapeutic effects on PTX-PNP. These findings demonstrate the significant potential of EFE as a novel, safe prophylactic and therapeutic agent against PTX-PNP.
{"title":"Preventive and therapeutic effects of ephedrine alkaloids-free Ephedra Herb extract on paclitaxel-induced neuropathic pain.","authors":"Xuedan Huang, Sumiko Hyuga, Michiho Ito, Yukihiro Goda, Yoshinori Kobayashi","doi":"10.1007/s11418-024-01853-8","DOIUrl":"https://doi.org/10.1007/s11418-024-01853-8","url":null,"abstract":"<p><p>Currently, there are no effective prophylactic or therapeutic drugs for the treatment of paclitaxel (PTX)-induced peripheral neuropathic pain (PTX-PNP), highlighting the urgent need for the development of effective prophylactic and therapeutic drugs. In this study, we initially compared the efficacy of Ephedra Herb extract (EHE) with that of ephedrine alkaloids-free Ephedra Herb extract (EFE), which lacked ephedrine alkaloids (EAs)-associated side effects, against the onset of PTX-induced mechanical allodynia, thermal hyperalgesia, and cold allodynia in mice. EHE and EFE demonstrated comparable preventive effects on the PTX-PNP in a dose-dependent manner. These results indicated that the preventive properties of EHE were independent of the EAs. Since elderly people are overwhelmingly more susceptible to developing cancer, we considered that EFE has greater benefits than EHE, so we conducted a study focused on the effects of EFE. EFE showed dose-dependent preventive effects on the onset of PTX-PNP. As a result of detailed investigation, coadministration of PTX and EFE (Co-EFE) was more effective than preadministration of EFE alone (Pre-EFE). And the effects of Co-EFE was same with the effect of preadministration of EFE and then coadministration of PTX and EFE (P&C-EFE). Additionally, Co-EFE after the onset of PTX-PNP improved PTX-induced mechanical allodynia, thermal hyperalgesia, and cold allodynia, confirming the therapeutic efficacy of EFE on PTX-PNP. In contrast, goshajinkigan, a Kampo medicine, and diclofenac, a non-steroidal anti-inflammatory drug, showed minimal therapeutic effects on PTX-PNP. These findings demonstrate the significant potential of EFE as a novel, safe prophylactic and therapeutic agent against PTX-PNP.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1007/s11418-024-01856-5
Nai-Wen Tsao, Ju-Ya Cheng, Sheng-Yang Wang
Acacia confusa Merr. (Fabaceae) (A. confusa) is a native tree species of Taiwan, commonly found in the low-altitude mountains and hilly areas of the Hengchun Peninsula. This evergreen, perennial, and large-sized tree was the focus of a study that employed various chromatographic and spectroscopic methods to analyze the hot water extract of its flowers. The analysis revealed that the major components of the extract were myricitrin, quercitrin, europetin-3-O-rhamnoside, and chalconaringenin-2'-xyloside, with respective concentrations of approximately 0.22, 0.02, 0.26, and 0.10 mg/g of the flowers. Subsequent cell assays were conducted to assess the inhibitory effect of the extract on lipid synthesis in fat cells. Oil Red O staining results indicated that the extract significantly suppressed fatty acid accumulation in 3T3-L1 cells, with the most pronounced effect observed at a concentration of 180 μg/ml. Furthermore, the hot water extract of A. confusa flowers was found to increase the phosphorylation of AMP-activated protein kinase (AMPK), decrease the phosphorylation of cAMP response element-binding protein (CREB), and reduce the expression of glucocorticoid receptor (GR) protein. This, in turn, inhibited the expression of downstream transcription factors such as CCAT/ehancer binding proteins α (C/EBPα), CCAT/ehancer binding proteins β (C/EBPβ), CCAT/ehancer binding proteins δ (C/EBPδ), peroxisome proliferation-actived receptor γ (PPARγ), and sterol regulatory element binding proteins-1 (SREBP-1). Consequently, the expression of lipid synthesis-related proteins acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and fatty acid translocase (CD36) was reduced, ultimately inhibiting lipid generation. Therefore, the hot water extract of A. confusa flowers shows potential for development as a weight-loss tea.
{"title":"Exploring the inhibitory activity and mechanism on lipid production in 3T3-L1 cells by hot water extract derived from Acacia confusa flowers.","authors":"Nai-Wen Tsao, Ju-Ya Cheng, Sheng-Yang Wang","doi":"10.1007/s11418-024-01856-5","DOIUrl":"https://doi.org/10.1007/s11418-024-01856-5","url":null,"abstract":"<p><p>Acacia confusa Merr. (Fabaceae) (A. confusa) is a native tree species of Taiwan, commonly found in the low-altitude mountains and hilly areas of the Hengchun Peninsula. This evergreen, perennial, and large-sized tree was the focus of a study that employed various chromatographic and spectroscopic methods to analyze the hot water extract of its flowers. The analysis revealed that the major components of the extract were myricitrin, quercitrin, europetin-3-O-rhamnoside, and chalconaringenin-2'-xyloside, with respective concentrations of approximately 0.22, 0.02, 0.26, and 0.10 mg/g of the flowers. Subsequent cell assays were conducted to assess the inhibitory effect of the extract on lipid synthesis in fat cells. Oil Red O staining results indicated that the extract significantly suppressed fatty acid accumulation in 3T3-L1 cells, with the most pronounced effect observed at a concentration of 180 μg/ml. Furthermore, the hot water extract of A. confusa flowers was found to increase the phosphorylation of AMP-activated protein kinase (AMPK), decrease the phosphorylation of cAMP response element-binding protein (CREB), and reduce the expression of glucocorticoid receptor (GR) protein. This, in turn, inhibited the expression of downstream transcription factors such as CCAT/ehancer binding proteins α (C/EBPα), CCAT/ehancer binding proteins β (C/EBPβ), CCAT/ehancer binding proteins δ (C/EBPδ), peroxisome proliferation-actived receptor γ (PPARγ), and sterol regulatory element binding proteins-1 (SREBP-1). Consequently, the expression of lipid synthesis-related proteins acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), and fatty acid translocase (CD36) was reduced, ultimately inhibiting lipid generation. Therefore, the hot water extract of A. confusa flowers shows potential for development as a weight-loss tea.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142542806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Research into the potential therapeutic benefits of herbal remedies for treating chronic kidney disease (CKD), a condition marked by renal fibrosis and persistent inflammation, has become popular. Eucommiae cortex (EC) is a vital herb for strengthening bones and muscles and tonifying the kidneys and liver. In the study, C57 BL/6 mice were given a diet containing 0.2% adenine to create a CKD model. The findings demonstrated that exogenous EC supplementation successfully decreased the levels of creatinine and urea nitrogen, down-regulated the TGF-β1/Smad signaling pathway's expression levels of TGF-β1, α-SMA, Smad3, and phospho-Smad3, and prevented renal fibrosis. Consequently, it was determined that EC might have a nephroprotective impact.
{"title":"Eucommiae cortex extract alleviates renal fibrosis in CKD mice induced by adenine through the TGF-β1/Smad signaling pathway.","authors":"Wenyi Jiang, Zhengyou He, Ruijiao Yao, Wenyan Xiao, Zhiyang Chen, Xia Zeng, Miao Zheng, Jing Wang, Jia Li, Yong Jiang","doi":"10.1007/s11418-024-01848-5","DOIUrl":"https://doi.org/10.1007/s11418-024-01848-5","url":null,"abstract":"<p><p>Research into the potential therapeutic benefits of herbal remedies for treating chronic kidney disease (CKD), a condition marked by renal fibrosis and persistent inflammation, has become popular. Eucommiae cortex (EC) is a vital herb for strengthening bones and muscles and tonifying the kidneys and liver. In the study, C57 BL/6 mice were given a diet containing 0.2% adenine to create a CKD model. The findings demonstrated that exogenous EC supplementation successfully decreased the levels of creatinine and urea nitrogen, down-regulated the TGF-β1/Smad signaling pathway's expression levels of TGF-β1, α-SMA, Smad3, and phospho-Smad3, and prevented renal fibrosis. Consequently, it was determined that EC might have a nephroprotective impact.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Phytochemical investigation on the aerial parts of Lysionotus pauciflorus Maxim. (Gesneriaceae), a medicinal plant used in Guangxi Zhuang Autonomous Region, China, resulted in the isolation of 13 secondary metabolites including two methoxyflavones, six flavonoid glycosides, and five caffeoyl phenylethanoid glycosides. Among these, the chemical structures of previously undescribed metabolites (1-3) were elucidated to be nevadensin 7-O-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranoside (1), nevadensin 7-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (2), and 2-(3,4-dihydroxyphenyl)ethyl-1-O-β-D-apiofuranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 3)-β-D-(6'-O-E-caffeoyl)glucopyranoside (3) by detailed spectroscopic and HPLC analyses. Inhibitory activity of isolated compounds against RSL3-induced ferroptosis on human hepatoma Hep3B cells were evaluated.
{"title":"Methoxyflavone glucosides and caffeoyl phenylethanoid glycoside from Lysionotus pauciflorus: their structures and anti-ferroptosis activity.","authors":"Rena Takizawa, Tomoyo Minamizono, Daisuke Tsuji, Xiao-Jie Yan, Feng-Lai Lu, Xue-Rong Yang, Dian-Peng Li, Reiko Akagi, Yoshiki Kashiwada, Naonobu Tanaka","doi":"10.1007/s11418-024-01851-w","DOIUrl":"https://doi.org/10.1007/s11418-024-01851-w","url":null,"abstract":"<p><p>Phytochemical investigation on the aerial parts of Lysionotus pauciflorus Maxim. (Gesneriaceae), a medicinal plant used in Guangxi Zhuang Autonomous Region, China, resulted in the isolation of 13 secondary metabolites including two methoxyflavones, six flavonoid glycosides, and five caffeoyl phenylethanoid glycosides. Among these, the chemical structures of previously undescribed metabolites (1-3) were elucidated to be nevadensin 7-O-β-D-glucopyranosyl-(1 → 2)-β-D-glucopyranoside (1), nevadensin 7-O-β-D-glucopyranosyl-(1 → 6)-β-D-glucopyranoside (2), and 2-(3,4-dihydroxyphenyl)ethyl-1-O-β-D-apiofuranosyl-(1 → 4)-α-L-rhamnopyranosyl-(1 → 3)-β-D-(6'-O-E-caffeoyl)glucopyranoside (3) by detailed spectroscopic and HPLC analyses. Inhibitory activity of isolated compounds against RSL3-induced ferroptosis on human hepatoma Hep3B cells were evaluated.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1007/s11418-024-01843-w
Amany Hamouda Mahmoud, Sabry A H Zidan, Mamdouh Nabil Samy, Abdallah Alian, Mahmoud A A Ibrahim, Mostafa Ahmed Fouad, Mohamed Salah Kamel, Katsuyoshi Matsunami
Two new sesquiterpenes; 8α,11-dihydroxy-β-cyperon (2), and 5-epi-7α-hydroxy-( +)-oplopanone (3), were isolated from the soft coral Litophyton arboreum, together with nine known ones, including five sesquiterpenes; 11-hydroxy-8-oxo-β-cyperon (1), alismoxide (4), 5β,8β-epidioxy-11-hydroxy-6-eudesmene (5), chabrolidione B (6), 7-oxo-tri-nor-eudesm-5-en-4β-ol (7), two sterols; 7β-acetoxy-24-methyl-cholesta-5,24(28)-diene-3β,19-diol (8), nebrosteroid M (9), and two glycerol derivatives; chimyl alcohol (10) and batyl alcohol (11). The structures of the isolated compounds were characterized using spectroscopic techniques, predominately HR-ESI-MS, 1D, 2D-NMR, and ECD analyses. Compounds 1-11 were evaluated for their cytotoxic activity against three human cancer-cell lines (A549, MCF-7 and HepG2), and anti-leishmanial potential against the causal parasite, Leishmania major. Compounds 4, 8, and 9 exhibited potent cytotoxic activity against the A549 cell line (IC50 = 17.0 ± 2.5, 13.5 ± 2.1, and 16.5 ± 1.3 μg/ml, respectively) as compared with the standard antitumor agent etoposide (IC50 28.4 ± 4.5 μg/ml). In addition, compound 9 exhibited remarkable cytotoxic activity against MCF-7 cell line (IC50 = 24.7 ± 2.1 μg/ml: 22.2 ± 4.2 μg/mL for etoposide).
{"title":"New sesquiterpenes from the soft coral Litophyton arboreum.","authors":"Amany Hamouda Mahmoud, Sabry A H Zidan, Mamdouh Nabil Samy, Abdallah Alian, Mahmoud A A Ibrahim, Mostafa Ahmed Fouad, Mohamed Salah Kamel, Katsuyoshi Matsunami","doi":"10.1007/s11418-024-01843-w","DOIUrl":"https://doi.org/10.1007/s11418-024-01843-w","url":null,"abstract":"<p><p>Two new sesquiterpenes; 8α,11-dihydroxy-β-cyperon (2), and 5-epi-7α-hydroxy-( +)-oplopanone (3), were isolated from the soft coral Litophyton arboreum, together with nine known ones, including five sesquiterpenes; 11-hydroxy-8-oxo-β-cyperon (1), alismoxide (4), 5β,8β-epidioxy-11-hydroxy-6-eudesmene (5), chabrolidione B (6), 7-oxo-tri-nor-eudesm-5-en-4β-ol (7), two sterols; 7β-acetoxy-24-methyl-cholesta-5,24(28)-diene-3β,19-diol (8), nebrosteroid M (9), and two glycerol derivatives; chimyl alcohol (10) and batyl alcohol (11). The structures of the isolated compounds were characterized using spectroscopic techniques, predominately HR-ESI-MS, 1D, 2D-NMR, and ECD analyses. Compounds 1-11 were evaluated for their cytotoxic activity against three human cancer-cell lines (A549, MCF-7 and HepG2), and anti-leishmanial potential against the causal parasite, Leishmania major. Compounds 4, 8, and 9 exhibited potent cytotoxic activity against the A549 cell line (IC<sub>50</sub> = 17.0 ± 2.5, 13.5 ± 2.1, and 16.5 ± 1.3 μg/ml, respectively) as compared with the standard antitumor agent etoposide (IC<sub>50</sub> 28.4 ± 4.5 μg/ml). In addition, compound 9 exhibited remarkable cytotoxic activity against MCF-7 cell line (IC<sub>50</sub> = 24.7 ± 2.1 μg/ml: 22.2 ± 4.2 μg/mL for etoposide).</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1007/s11418-024-01850-x
Hao Zhang, Xiaoyun Ding, Yumei Qiu, Mengdie Xie, Hu Wang, Tingting Li, Huiyun Bao, Si Huang, Yinhua Xiong, Xilan Tang
Cardiotoxicity is one of the major obstacles to anthracycline chemotherapy. Anthracycline cardiotoxicity is closely associated with inflammation. Imperatorin (IMP), a furocoumarin ingredient extracted from Angelica dahurica, might have potential activity in preventing anthracycline cardiotoxicity due to its anti-cancer, anti-inflammatory, anti-oxidant, cardioprotective properties. This study aims to reveal the effect of IMP on doxorubicin (DOX)-induced cardiotoxicity and its underlying mechanism. We established a rat model of DOX-induced cardiotoxicity by intraperitoneal injection with DOX (1.25 mg/kg twice weekly for 6 weeks), and found that both IMP (25 mg/kg and 12.5 mg/kg) and dexrazoxane 12.5 mg/kg relieved DOX-induced reductions in heart weight, change in cardiac histopathology, and elevated serum levels of LDH, AST and CK-MB. Moreover, DOX upregulated mRNA levels of NLRP3, CASP1, GSDMD, ASC, IL-1β and IL-18, elevated protein expressions of NLRP3, ASC, GSDMD-FL, GSDMD-N, pro‑caspase‑1, caspase‑1 p20, pro‑IL‑1β and IL‑1β in heart tissues, as well as increased serum levels of pro-inflammatory cytokines including IL-1β and IL-18, however both of IMP and dexrazoxane suppressed these alterations. In addition, we carried out neonatal rat cardiomyocytes experiments to confirm the results of the in vivo study. Consistently, pretreatment with IMP 25 µg/mL relieved DOX (1 μg/mL)-induced cardiomyocytes injury, including decreased cell viability and reduced supernatant LDH. IMP inhibited DOX-induced activation of NLRP3 inflammasome in cardiomyocytes. In conclusion, IMP had a protective effect against DOX-induced cardiotoxicity via repressing the activation of NLRP3 inflammasome. These findings suggest that IMP may be a promising alternative or adjunctive drug for the prevention of anthracycline cardiotoxicity.
{"title":"Preventive effect of imperatorin against doxorubicin-induced cardiotoxicity through suppression of NLRP3 inflammasome activation.","authors":"Hao Zhang, Xiaoyun Ding, Yumei Qiu, Mengdie Xie, Hu Wang, Tingting Li, Huiyun Bao, Si Huang, Yinhua Xiong, Xilan Tang","doi":"10.1007/s11418-024-01850-x","DOIUrl":"https://doi.org/10.1007/s11418-024-01850-x","url":null,"abstract":"<p><p>Cardiotoxicity is one of the major obstacles to anthracycline chemotherapy. Anthracycline cardiotoxicity is closely associated with inflammation. Imperatorin (IMP), a furocoumarin ingredient extracted from Angelica dahurica, might have potential activity in preventing anthracycline cardiotoxicity due to its anti-cancer, anti-inflammatory, anti-oxidant, cardioprotective properties. This study aims to reveal the effect of IMP on doxorubicin (DOX)-induced cardiotoxicity and its underlying mechanism. We established a rat model of DOX-induced cardiotoxicity by intraperitoneal injection with DOX (1.25 mg/kg twice weekly for 6 weeks), and found that both IMP (25 mg/kg and 12.5 mg/kg) and dexrazoxane 12.5 mg/kg relieved DOX-induced reductions in heart weight, change in cardiac histopathology, and elevated serum levels of LDH, AST and CK-MB. Moreover, DOX upregulated mRNA levels of NLRP3, CASP1, GSDMD, ASC, IL-1β and IL-18, elevated protein expressions of NLRP3, ASC, GSDMD-FL, GSDMD-N, pro‑caspase‑1, caspase‑1 p20, pro‑IL‑1β and IL‑1β in heart tissues, as well as increased serum levels of pro-inflammatory cytokines including IL-1β and IL-18, however both of IMP and dexrazoxane suppressed these alterations. In addition, we carried out neonatal rat cardiomyocytes experiments to confirm the results of the in vivo study. Consistently, pretreatment with IMP 25 µg/mL relieved DOX (1 μg/mL)-induced cardiomyocytes injury, including decreased cell viability and reduced supernatant LDH. IMP inhibited DOX-induced activation of NLRP3 inflammasome in cardiomyocytes. In conclusion, IMP had a protective effect against DOX-induced cardiotoxicity via repressing the activation of NLRP3 inflammasome. These findings suggest that IMP may be a promising alternative or adjunctive drug for the prevention of anthracycline cardiotoxicity.</p>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142455365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}