Huan Chen, Mingrui Yang, Xianglong Shang, Hao Chen, Yi Li, Yanjiao Li, Lin Li, Mingren Qu, Xiaozhen Song
{"title":"Pogostemon cablin essential oil as feed additive promotes the repair of the rumen epithelial barrier in heat-stressed beef cattle","authors":"Huan Chen, Mingrui Yang, Xianglong Shang, Hao Chen, Yi Li, Yanjiao Li, Lin Li, Mingren Qu, Xiaozhen Song","doi":"10.1016/j.aninu.2024.06.001","DOIUrl":null,"url":null,"abstract":"essential oil (PEO), extracted from , has anti-oxidant, anti-inflammatory, and anti-stress properties, as well as the ability to improve gastrointestinal digestion. This study aims to evaluate the effects of PEO on the performance, rumen epithelial morphology, and barrier function in heat-stressed beef cattle. Thirty-six male Jingjiang cattle at 18 months old were randomly assigned into four groups and fed a diet containing PEO at 0 (control), 50, 100, or 150 mg/kg in the feed concentrate ( = 9). All experimental cattle were fed under high temperature and humidity in summer for 60 days. The results indicated that 50 mg/kg of PEO treatment enhanced the average daily gain of beef cattle compared with the control group ( = 0.032). All PEO treatments reduced the diamine oxidase activity ( = 0.004) and malondialdehyde content ( = 0.008) in serum. In addition, the content of 70 kDa heat shock protein in the 100 mg/kg group was increased, and the activity of glutathione peroxidase and total antioxidant capacity in both 100 mg/kg and 150 mg/kg groups were enhanced compared to the control group ( < 0.05). More importantly, PEO treatment with 50 mg/kg enhanced the mRNA relative expressions of occludin in ruminal epithelia but decreased the mRNA relative expressions of c-Jun N-terminal kinase, P38 mitogen-activated protein kinases, caspase-3, Beclin1 ( < 0.05), and extremely significant declined the mRNA relative expressions of extracellular regulated protein kinases and ubiquitin-binding protein in contrast to the control group ( < 0.01). These findings indicated that dietary PEO supplementation might be favorable to improve growth performance and repairing damaged rumen epithelium of heat-stressed cattle by down-regulating the mitogen-activated protein kinase signaling pathway.","PeriodicalId":8184,"journal":{"name":"Animal Nutrition","volume":"31 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal Nutrition","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.aninu.2024.06.001","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
essential oil (PEO), extracted from , has anti-oxidant, anti-inflammatory, and anti-stress properties, as well as the ability to improve gastrointestinal digestion. This study aims to evaluate the effects of PEO on the performance, rumen epithelial morphology, and barrier function in heat-stressed beef cattle. Thirty-six male Jingjiang cattle at 18 months old were randomly assigned into four groups and fed a diet containing PEO at 0 (control), 50, 100, or 150 mg/kg in the feed concentrate ( = 9). All experimental cattle were fed under high temperature and humidity in summer for 60 days. The results indicated that 50 mg/kg of PEO treatment enhanced the average daily gain of beef cattle compared with the control group ( = 0.032). All PEO treatments reduced the diamine oxidase activity ( = 0.004) and malondialdehyde content ( = 0.008) in serum. In addition, the content of 70 kDa heat shock protein in the 100 mg/kg group was increased, and the activity of glutathione peroxidase and total antioxidant capacity in both 100 mg/kg and 150 mg/kg groups were enhanced compared to the control group ( < 0.05). More importantly, PEO treatment with 50 mg/kg enhanced the mRNA relative expressions of occludin in ruminal epithelia but decreased the mRNA relative expressions of c-Jun N-terminal kinase, P38 mitogen-activated protein kinases, caspase-3, Beclin1 ( < 0.05), and extremely significant declined the mRNA relative expressions of extracellular regulated protein kinases and ubiquitin-binding protein in contrast to the control group ( < 0.01). These findings indicated that dietary PEO supplementation might be favorable to improve growth performance and repairing damaged rumen epithelium of heat-stressed cattle by down-regulating the mitogen-activated protein kinase signaling pathway.
Animal NutritionAgricultural and Biological Sciences-Animal Science and Zoology
CiteScore
7.40
自引率
3.20%
发文量
172
审稿时长
12 weeks
期刊介绍:
Animal Nutrition encompasses the full gamut of animal nutritional sciences and reviews including, but not limited to, fundamental aspects of animal nutrition such as nutritional requirements, metabolic studies, body composition, energetics, immunology, neuroscience, microbiology, genetics and molecular and cell biology related to nutrition, and more applied aspects of animal nutrition, such as raw material evaluation, feed additives, nutritive value of novel ingredients and feed safety.