{"title":"Effect of Channel Aging on Beyond Diagonal Reconfigurable Intelligent Surfaces","authors":"Anastasios Papazafeiropoulos;Pandelis Kourtessis;Symeon Chatzinotas","doi":"10.1109/OJCOMS.2024.3460055","DOIUrl":null,"url":null,"abstract":"Reconfigurable intelligent surface (RIS) has appeared as a revolutionary candidate technology for future sixth-generation (6G) networks, but most works have relied on single-connected reflective RISs, which are mathematically described by diagonal phase shift matrices. In this work, based on the recently presented research on beyond diagonal (BD) RIS unifying different RIS models and architectures towards enhanced advantages such as a greater coverage, we study the impact of channel aging due to user equipment (UE) movement. Especially, we evaluate how channel aging diminishes the system performance of multiple sector BD-RIS systems. Through a robust design, concerning the average sum-rate maximisation problem, we jointly design the BD-matrix and transmit precoder under the channel aging conditions. Numerical results show how channel aging affects performance with respect to fundamental system parameters and shed light on how general aging can be compensated.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"6303-6313"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10680138","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10680138/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Reconfigurable intelligent surface (RIS) has appeared as a revolutionary candidate technology for future sixth-generation (6G) networks, but most works have relied on single-connected reflective RISs, which are mathematically described by diagonal phase shift matrices. In this work, based on the recently presented research on beyond diagonal (BD) RIS unifying different RIS models and architectures towards enhanced advantages such as a greater coverage, we study the impact of channel aging due to user equipment (UE) movement. Especially, we evaluate how channel aging diminishes the system performance of multiple sector BD-RIS systems. Through a robust design, concerning the average sum-rate maximisation problem, we jointly design the BD-matrix and transmit precoder under the channel aging conditions. Numerical results show how channel aging affects performance with respect to fundamental system parameters and shed light on how general aging can be compensated.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.