{"title":"HCBiLSTM-WOA: hybrid convolutional bidirectional long short-term memory with water optimization algorithm for autism spectrum disorder.","authors":"V Kavitha,R Siva","doi":"10.1080/10255842.2024.2399016","DOIUrl":null,"url":null,"abstract":"Autism Spectrum Disorder (ASD) is a type of brain developmental disability that cannot be completely treated, but its impact can be reduced through early interventions. Early identification of neurological disorders will better assist in preserving the subjects' physical and mental health. Although numerous research works exist for detecting autism spectrum disorder, they are cumbersome and insufficient for dealing with real-time datasets. Therefore, to address these issues, this paper proposes an ASD detection mechanism using a novel Hybrid Convolutional Bidirectional Long Short-Term Memory based Water Optimization Algorithm (HCBiLSTM-WOA). The prediction efficiency of the proposed HCBiLSTM-WOA method is investigated using real-time ASD datasets containing both ASD and non-ASD data from toddlers, children, adolescents, and adults. The inconsistent and incomplete representations of the raw ASD dataset are modified using preprocessing procedures such as handling missing values, predicting outliers, data discretization, and data reduction. The preprocessed data obtained is then fed into the proposed HCBiLSTM-WOA classification model to effectively predict the non-ASD and ASD classes. The initially randomly initialized hyperparameters of the HCBiLSTM model are adjusted and tuned using the water optimization algorithm (WOA) to increase the prediction accuracy of ASD. After detecting non-ASD and ASD classes, the HCBiLSTM-WOA method further classifies the ASD cases into respective stages based on the autistic traits observed in toddlers, children, adolescents, and adults. Also, the ethical considerations that should be taken into account when campaign ASD risk communication are complex due to the data privacy and unpredictability surrounding ASD risk factors. The fusion of sophisticated deep learning techniques with an optimization algorithm presents a promising framework for ASD diagnosis. This innovative approach shows potential in effectively managing intricate ASD data, enhancing diagnostic precision, and improving result interpretation. Consequently, it offers clinicians a tool for early and precise detection, allowing for timely intervention in ASD cases. Moreover, the performance of the proposed HCBiLSTM-WOA method is evaluated using various performance indicators such as accuracy, kappa statistics, sensitivity, specificity, log loss, and Area Under the Receiver Operating Characteristics (AUROC). The simulation results reveal the superiority of the proposed HCBiLSTM-WOA method in detecting ASD compared to other existing methods. The proposed method achieves a higher ASD prediction accuracy of about 98.53% than the other methods being compared.","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2399016","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Autism Spectrum Disorder (ASD) is a type of brain developmental disability that cannot be completely treated, but its impact can be reduced through early interventions. Early identification of neurological disorders will better assist in preserving the subjects' physical and mental health. Although numerous research works exist for detecting autism spectrum disorder, they are cumbersome and insufficient for dealing with real-time datasets. Therefore, to address these issues, this paper proposes an ASD detection mechanism using a novel Hybrid Convolutional Bidirectional Long Short-Term Memory based Water Optimization Algorithm (HCBiLSTM-WOA). The prediction efficiency of the proposed HCBiLSTM-WOA method is investigated using real-time ASD datasets containing both ASD and non-ASD data from toddlers, children, adolescents, and adults. The inconsistent and incomplete representations of the raw ASD dataset are modified using preprocessing procedures such as handling missing values, predicting outliers, data discretization, and data reduction. The preprocessed data obtained is then fed into the proposed HCBiLSTM-WOA classification model to effectively predict the non-ASD and ASD classes. The initially randomly initialized hyperparameters of the HCBiLSTM model are adjusted and tuned using the water optimization algorithm (WOA) to increase the prediction accuracy of ASD. After detecting non-ASD and ASD classes, the HCBiLSTM-WOA method further classifies the ASD cases into respective stages based on the autistic traits observed in toddlers, children, adolescents, and adults. Also, the ethical considerations that should be taken into account when campaign ASD risk communication are complex due to the data privacy and unpredictability surrounding ASD risk factors. The fusion of sophisticated deep learning techniques with an optimization algorithm presents a promising framework for ASD diagnosis. This innovative approach shows potential in effectively managing intricate ASD data, enhancing diagnostic precision, and improving result interpretation. Consequently, it offers clinicians a tool for early and precise detection, allowing for timely intervention in ASD cases. Moreover, the performance of the proposed HCBiLSTM-WOA method is evaluated using various performance indicators such as accuracy, kappa statistics, sensitivity, specificity, log loss, and Area Under the Receiver Operating Characteristics (AUROC). The simulation results reveal the superiority of the proposed HCBiLSTM-WOA method in detecting ASD compared to other existing methods. The proposed method achieves a higher ASD prediction accuracy of about 98.53% than the other methods being compared.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.