{"title":"Exploring coronavirus sequence motifs through convolutional neural network for accurate identification of COVID-19.","authors":"Praveen Gugulothu, Raju Bhukya","doi":"10.1080/10255842.2024.2404149","DOIUrl":null,"url":null,"abstract":"<p><p>The SARS-CoV-2 virus reportedly originated in Wuhan in 2019, causing the coronavirus outbreak (COVID-19), which was technically designated as a global epidemic. Numerous studies have been carried out to diagnose and treat COVID-19 throughout the midst of the disease's spread. However, the genetic similarity between COVID-19 and other types of coronaviruses makes it challenging to differentiate between them. Therefore it's essential to swiftly identify if an epidemic is brought on by a brand-new virus or a well-known disease. In the present article, the DeepCoV deep-learning (DL) approach utilizes layered convolutional neural networks (CNNs) to classify viral serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) besides other viral diseases. Additionally, various motifs linked with SARS-CoV-2 can be located by examining the computational filter processes. In identifying these important motifs, DeepCoV reveals the transparency of CNNs. Experiments were conducted using the 2019nCoVR datasets, and the results indicate that DeepCoV performed more accurately than several benchmark ML models. Additionally, DeepCoV scored its maximum area under the precision-recall curve (AUCPR) and receiver operating characteristic curve (AUC-ROC) at 98.62% and 98.58%, respectively. Overall, these investigations provide strong knowledge of the employment of deep learning (DL) algorithms as a crucial alternative to identifying SARS-CoV-2 and identifying patterns of disease in the SARS-CoV-2 genes.</p>","PeriodicalId":50640,"journal":{"name":"Computer Methods in Biomechanics and Biomedical Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Biomechanics and Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10255842.2024.2404149","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The SARS-CoV-2 virus reportedly originated in Wuhan in 2019, causing the coronavirus outbreak (COVID-19), which was technically designated as a global epidemic. Numerous studies have been carried out to diagnose and treat COVID-19 throughout the midst of the disease's spread. However, the genetic similarity between COVID-19 and other types of coronaviruses makes it challenging to differentiate between them. Therefore it's essential to swiftly identify if an epidemic is brought on by a brand-new virus or a well-known disease. In the present article, the DeepCoV deep-learning (DL) approach utilizes layered convolutional neural networks (CNNs) to classify viral serious acute respiratory syndrome coronavirus 2 (SARS-CoV-2) besides other viral diseases. Additionally, various motifs linked with SARS-CoV-2 can be located by examining the computational filter processes. In identifying these important motifs, DeepCoV reveals the transparency of CNNs. Experiments were conducted using the 2019nCoVR datasets, and the results indicate that DeepCoV performed more accurately than several benchmark ML models. Additionally, DeepCoV scored its maximum area under the precision-recall curve (AUCPR) and receiver operating characteristic curve (AUC-ROC) at 98.62% and 98.58%, respectively. Overall, these investigations provide strong knowledge of the employment of deep learning (DL) algorithms as a crucial alternative to identifying SARS-CoV-2 and identifying patterns of disease in the SARS-CoV-2 genes.
期刊介绍:
The primary aims of Computer Methods in Biomechanics and Biomedical Engineering are to provide a means of communicating the advances being made in the areas of biomechanics and biomedical engineering and to stimulate interest in the continually emerging computer based technologies which are being applied in these multidisciplinary subjects. Computer Methods in Biomechanics and Biomedical Engineering will also provide a focus for the importance of integrating the disciplines of engineering with medical technology and clinical expertise. Such integration will have a major impact on health care in the future.