Molecular interaction studies of L-proline in water and ethanol at different temperatures using dielectric relaxation, refractive index and DFT methods.

K Aiswarya,T Vishwam,T Vamshi Prasad,C Thirmal,K C James Raju
{"title":"Molecular interaction studies of L-proline in water and ethanol at different temperatures using dielectric relaxation, refractive index and DFT methods.","authors":"K Aiswarya,T Vishwam,T Vamshi Prasad,C Thirmal,K C James Raju","doi":"10.1080/07391102.2024.2402692","DOIUrl":null,"url":null,"abstract":"The complex dielectric permittivity of L-Proline in water and ethanol solutions with molar concentrations ranging from 0.025 M to 0.15 M was measured by open-ended coaxial probe technique. The measurements were carried out across a frequency span of 0.02 < ν/GHz < 20 and temperatures varying from 298.15 K to 323.15 K. The densities (ρ) and refractive index (nD) of the L-proline in aqueous and ethanol solutions were also determined to provide insights into the solute-solvent interactions in the system. The Havriliak-Negami equation was employed to compute the dielectric relaxation time of the mixtures. The relaxation time of L-Proline in an ethanol medium was found to be higher than that of L-Proline in an aqueous medium due to the greater degree of self-association of ethanol molecules. Additionally, the relaxation time of the mixtures lengthened with rising molar concentration, which is attributed to the presence of hydrogen bonds among L-Proline and aqueous/ethanol molecules. The strength of the hydrogen bond interaction of L-Proline in both mediums was calculated using single-point energy calculations employing IEFPCM/PCM solvation models through DFT/B3LYP and MP2 approaches with a 6-311 G ++ (d, p) basis set. The results were correlated with the hydrogen bond strength, Gibbs' free energy of activation parameter, and dipole-dipole interactions.Communicated by Ramaswamy H. Sarma.","PeriodicalId":15085,"journal":{"name":"Journal of Biomolecular Structure and Dynamics","volume":"21 1","pages":"1-13"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomolecular Structure and Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07391102.2024.2402692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The complex dielectric permittivity of L-Proline in water and ethanol solutions with molar concentrations ranging from 0.025 M to 0.15 M was measured by open-ended coaxial probe technique. The measurements were carried out across a frequency span of 0.02 < ν/GHz < 20 and temperatures varying from 298.15 K to 323.15 K. The densities (ρ) and refractive index (nD) of the L-proline in aqueous and ethanol solutions were also determined to provide insights into the solute-solvent interactions in the system. The Havriliak-Negami equation was employed to compute the dielectric relaxation time of the mixtures. The relaxation time of L-Proline in an ethanol medium was found to be higher than that of L-Proline in an aqueous medium due to the greater degree of self-association of ethanol molecules. Additionally, the relaxation time of the mixtures lengthened with rising molar concentration, which is attributed to the presence of hydrogen bonds among L-Proline and aqueous/ethanol molecules. The strength of the hydrogen bond interaction of L-Proline in both mediums was calculated using single-point energy calculations employing IEFPCM/PCM solvation models through DFT/B3LYP and MP2 approaches with a 6-311 G ++ (d, p) basis set. The results were correlated with the hydrogen bond strength, Gibbs' free energy of activation parameter, and dipole-dipole interactions.Communicated by Ramaswamy H. Sarma.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用介电弛豫、折射率和 DFT 方法研究不同温度下 L-脯氨酸在水和乙醇中的分子相互作用。
采用开口同轴探针技术测量了 L-脯氨酸在摩尔浓度为 0.025 M 至 0.15 M 的水和乙醇溶液中的复介电常数。测量的频率跨度为 0.02 < ν/GHz < 20,温度范围为 298.15 K 至 323.15 K。此外,还测定了 L-脯氨酸在水溶液和乙醇溶液中的密度 (ρ)和折射率 (nD),以便深入了解体系中溶质与溶剂之间的相互作用。计算混合物的介电弛豫时间时采用了 Havriliak-Negami 方程。结果发现,由于乙醇分子的自结合程度较高,L-脯氨酸在乙醇介质中的弛豫时间高于 L-脯氨酸在水介质中的弛豫时间。此外,混合物的弛豫时间随着摩尔浓度的增加而延长,这是因为 L-脯氨酸和水/乙醇分子之间存在氢键。通过 DFT/B3LYP 和 MP2 方法,采用 6-311 G ++ (d, p) 基集,利用 IEFPCM/PCM 溶解模型进行单点能量计算,计算了两种介质中 L-脯氨酸氢键相互作用的强度。计算结果与氢键强度、吉布斯活化自由能参数和偶极-偶极相互作用相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cheminformatics-enhanced discovery of therapeutic agents targeting isocitrate lyase in Mycobacterium tuberculosis infections. Molecular interaction studies of L-proline in water and ethanol at different temperatures using dielectric relaxation, refractive index and DFT methods. Kaempferol as a novel inhibitor of SARS-CoV-2 RNA-dependent RNA polymerase. Book of Abstracts. The 1st Next Generation Conversations: Albany at Ruston 2024 (The 21st Albany Conversation) Antifungal drug discovery for targeting Candida albicans morphogenesis through structural dynamics study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1