Schrödinger Bridge Flow for Unpaired Data Translation

Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, Arnaud Doucet
{"title":"Schrödinger Bridge Flow for Unpaired Data Translation","authors":"Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, Arnaud Doucet","doi":"arxiv-2409.09347","DOIUrl":null,"url":null,"abstract":"Mass transport problems arise in many areas of machine learning whereby one\nwants to compute a map transporting one distribution to another. Generative\nmodeling techniques like Generative Adversarial Networks (GANs) and Denoising\nDiffusion Models (DDMs) have been successfully adapted to solve such transport\nproblems, resulting in CycleGAN and Bridge Matching respectively. However,\nthese methods do not approximate Optimal Transport (OT) maps, which are known\nto have desirable properties. Existing techniques approximating OT maps for\nhigh-dimensional data-rich problems, such as DDM-based Rectified Flow and\nSchr\\\"odinger Bridge procedures, require fully training a DDM-type model at\neach iteration, or use mini-batch techniques which can introduce significant\nerrors. We propose a novel algorithm to compute the Schr\\\"odinger Bridge, a\ndynamic entropy-regularised version of OT, that eliminates the need to train\nmultiple DDM-like models. This algorithm corresponds to a discretisation of a\nflow of path measures, which we call the Schr\\\"odinger Bridge Flow, whose only\nstationary point is the Schr\\\"odinger Bridge. We demonstrate the performance of\nour algorithm on a variety of unpaired data translation tasks.","PeriodicalId":501340,"journal":{"name":"arXiv - STAT - Machine Learning","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Machine Learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.09347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Mass transport problems arise in many areas of machine learning whereby one wants to compute a map transporting one distribution to another. Generative modeling techniques like Generative Adversarial Networks (GANs) and Denoising Diffusion Models (DDMs) have been successfully adapted to solve such transport problems, resulting in CycleGAN and Bridge Matching respectively. However, these methods do not approximate Optimal Transport (OT) maps, which are known to have desirable properties. Existing techniques approximating OT maps for high-dimensional data-rich problems, such as DDM-based Rectified Flow and Schr\"odinger Bridge procedures, require fully training a DDM-type model at each iteration, or use mini-batch techniques which can introduce significant errors. We propose a novel algorithm to compute the Schr\"odinger Bridge, a dynamic entropy-regularised version of OT, that eliminates the need to train multiple DDM-like models. This algorithm corresponds to a discretisation of a flow of path measures, which we call the Schr\"odinger Bridge Flow, whose only stationary point is the Schr\"odinger Bridge. We demonstrate the performance of our algorithm on a variety of unpaired data translation tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于非配对数据转换的薛定谔桥流
在机器学习的许多领域都会出现大规模传输问题,即人们希望计算将一个分布传输到另一个分布的地图。生成模型技术,如生成对抗网络(GAN)和去噪扩散模型(DDM),已被成功地用于解决此类传输问题,分别产生了循环生成对抗网络(CycleGAN)和桥匹配(Bridge Matching)。然而,这些方法并不能逼近已知具有理想特性的最优传输(OT)图。现有的针对高维数据丰富问题的近似 OT 地图的技术,如基于 DDM 的整流程序和薛定谔桥程序,需要在每次迭代时完全训练一个 DDM 类型的模型,或者使用可能引入重大误差的迷你批处理技术。我们提出了一种计算 Schr\"odinger Bridge 的新算法,即 OT 的动态熵规则化版本,它无需训练多个类似于 DDM 的模型。该算法对应于路径度量流的离散化,我们称之为薛定谔桥流,其唯一的静止点就是薛定谔桥。我们在各种非配对数据转换任务中演示了我们算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fitting Multilevel Factor Models Cartan moving frames and the data manifolds Symmetry-Based Structured Matrices for Efficient Approximately Equivariant Networks Recurrent Interpolants for Probabilistic Time Series Prediction PieClam: A Universal Graph Autoencoder Based on Overlapping Inclusive and Exclusive Communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1