Ethylene Modulates the Phenylpropanoid Pathway by Enhancing VvMYB14 Expression via the ERF5-Melatonin-ERF104 Pathway in Grape Seeds

Shiwei Gao, Fei Wang, Shengnan Wang, Shuxia Lan, Yujiao Xu, Xinning Lyu, Hui Kang, Yuxin Yao
{"title":"Ethylene Modulates the Phenylpropanoid Pathway by Enhancing VvMYB14 Expression via the ERF5-Melatonin-ERF104 Pathway in Grape Seeds","authors":"Shiwei Gao, Fei Wang, Shengnan Wang, Shuxia Lan, Yujiao Xu, Xinning Lyu, Hui Kang, Yuxin Yao","doi":"10.1101/2024.09.10.612321","DOIUrl":null,"url":null,"abstract":"Ethylene plays a crucial role in regulating polyphenol metabolism, however the underlying mechanism remains largely unknown. This work demonstrated that ethylene release occurred earlier than melatonin during seed ripening. Ethylene treatment increased the VvASMT expression and melatonin content. VvERF5 was elucidated to bind to the ERE element in the VvASMT promoter. VvERF5 overexpression increased ASMT expression and melatonin content while its suppression generated the opposite results in grape seeds, calli and/or Arabidopsis seeds. Using the promoter of VvMYB14, which was strongly induced by melatonin, a melatonin responsive element (MTRE) was identified. VvERF104 was revealed not only to be strongly induced by melatonin but to bind to the MTRE of the VvMYB14. VvERF104 overexpression and suppression largely increased and decreased the MYB14 expression, respectively, in grape seeds, calli and/or Arabidopsis seeds. VvMYB14 overexpression widely modified the expression of genes in phenylpropanoid pathway and phenolic compound content in grape seeds. DAP-seq revealed that the MEME-1 motif was the most likely binding sites of VvMYB14. VvPAL, VvC4H and VvCHS were verified to be the target genes of VvMYB14. Additionally, the roles of VvERF5, VvASMT and VvERF104 in mediating ethylene-induced changes in phenylpropanoid pathway were elucidated using their suppressing seeds. Collectively, ethylene increased the VvMYB14 expression via the pathway of ERF5-melatonin-ERF104 and thereby modified phenylpropanoid pathway.","PeriodicalId":501341,"journal":{"name":"bioRxiv - Plant Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Plant Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.10.612321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ethylene plays a crucial role in regulating polyphenol metabolism, however the underlying mechanism remains largely unknown. This work demonstrated that ethylene release occurred earlier than melatonin during seed ripening. Ethylene treatment increased the VvASMT expression and melatonin content. VvERF5 was elucidated to bind to the ERE element in the VvASMT promoter. VvERF5 overexpression increased ASMT expression and melatonin content while its suppression generated the opposite results in grape seeds, calli and/or Arabidopsis seeds. Using the promoter of VvMYB14, which was strongly induced by melatonin, a melatonin responsive element (MTRE) was identified. VvERF104 was revealed not only to be strongly induced by melatonin but to bind to the MTRE of the VvMYB14. VvERF104 overexpression and suppression largely increased and decreased the MYB14 expression, respectively, in grape seeds, calli and/or Arabidopsis seeds. VvMYB14 overexpression widely modified the expression of genes in phenylpropanoid pathway and phenolic compound content in grape seeds. DAP-seq revealed that the MEME-1 motif was the most likely binding sites of VvMYB14. VvPAL, VvC4H and VvCHS were verified to be the target genes of VvMYB14. Additionally, the roles of VvERF5, VvASMT and VvERF104 in mediating ethylene-induced changes in phenylpropanoid pathway were elucidated using their suppressing seeds. Collectively, ethylene increased the VvMYB14 expression via the pathway of ERF5-melatonin-ERF104 and thereby modified phenylpropanoid pathway.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乙烯通过 ERF5-Melatonin-ERF104 途径增强葡萄籽中 VvMYB14 的表达,从而调节苯丙酮途径
乙烯在调节多酚代谢中起着至关重要的作用,但其基本机制在很大程度上仍不为人所知。这项研究表明,在种子成熟过程中,乙烯的释放早于褪黑激素。乙烯处理增加了 VvASMT 的表达和褪黑激素的含量。研究发现 VvERF5 与 VvASMT 启动子中的ERE元件结合。在葡萄种子、胼胝体和/或拟南芥种子中,VvERF5的过表达会增加ASMT的表达和褪黑激素的含量,而抑制VvERF5则会产生相反的结果。利用褪黑激素强烈诱导的 VvMYB14 启动子,确定了褪黑激素反应元件(MTRE)。研究发现,VvERF104 不仅能被褪黑激素强烈诱导,而且能与 VvMYB14 的 MTRE 结合。在葡萄种子、胼胝体和/或拟南芥种子中,VvERF104的过表达和抑制分别在很大程度上增加和减少了MYB14的表达。VvMYB14 的过表达广泛改变了葡萄籽中苯丙氨酸途径基因的表达和酚类化合物的含量。DAP-seq显示,MEME-1基序是VvMYB14最可能的结合位点。VvPAL、VvC4H 和 VvCHS 被证实是 VvMYB14 的靶基因。此外,利用 VvERF5、VvASMT 和 VvERF104 的抑制种子,阐明了它们在乙烯诱导的苯丙酮途径变化中的作用。总之,乙烯通过ERF5-褪黑激素-ERF104途径增加了VvMYB14的表达,从而改变了苯丙酮途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrated Transcriptome and Metabolome Analyses Reveal the Mechanism Regulating Bulbil Initiation and Development in Cystopteris chinensis Directional Cell-to-cell Transport in Plant Roots Bundle sheath cell-dependent chloroplast movement in mesophyll cells of C4 plants analyzed using live leaf-section imaging Stigma longevity is not a major limiting factor in hybrid wheat seed production Genotype by environment interactions in gene regulation underlie the response to soil drying in the model grass Brachypodium distachyon
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1