Evangelos K. Andreou, Ioannis Vamvasakis, Andreas Douloumis, Georgios Kopidakis and Gerasimos S. Armatas*,
{"title":"Size Dependent Photocatalytic Activity of Mesoporous ZnIn2S4 Nanocrystal Networks","authors":"Evangelos K. Andreou, Ioannis Vamvasakis, Andreas Douloumis, Georgios Kopidakis and Gerasimos S. Armatas*, ","doi":"10.1021/acscatal.4c0419510.1021/acscatal.4c04195","DOIUrl":null,"url":null,"abstract":"<p >Understanding of the band-edge electronic structure and charge-transfer dynamics in size-confined nanostructures is vital in designing new materials for energy conversion applications, including green hydrogen production, decomposition of organic pollutants and solar cells. In this study, a series of mesoporous materials comprising continuous networks of linked zinc indium sulfide (ZnIn<sub>2</sub>S<sub>4</sub>) nanocrystals with a tunable diameter (ranging from 4 to 12 nm) is reported. These nanomaterials demonstrate intriguing size-dependent electronic properties, charge-transfer kinetics and photocatalytic behaviors. Our extensive characterizations uncover strong size effects on the catalytic activity of constituent ZnIn<sub>2</sub>S<sub>4</sub> nanocrystals in the photochemical hydrogen evolution reaction. As an outcome, the optimized single-component ZnIn<sub>2</sub>S<sub>4</sub> mesostructure produces hydrogen at a 7.8 mmol g<sub>cat</sub><sup>–1</sup> h<sup>–1</sup> release rate under ultraviolet (UV)–visible light irradiation associated with an apparent quantum yield (AQY) of 17.2% at 420 ± 10 nm, far surpassing its microstructured counterpart by a factor of 10.7×. These findings provide a valuable perspective for the rational design of semiconductor nanostructures through synthetic engineering, aiming at the development of high-performance catalysts for zero-carbon energy-related applications.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":null,"pages":null},"PeriodicalIF":11.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acscatal.4c04195","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c04195","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding of the band-edge electronic structure and charge-transfer dynamics in size-confined nanostructures is vital in designing new materials for energy conversion applications, including green hydrogen production, decomposition of organic pollutants and solar cells. In this study, a series of mesoporous materials comprising continuous networks of linked zinc indium sulfide (ZnIn2S4) nanocrystals with a tunable diameter (ranging from 4 to 12 nm) is reported. These nanomaterials demonstrate intriguing size-dependent electronic properties, charge-transfer kinetics and photocatalytic behaviors. Our extensive characterizations uncover strong size effects on the catalytic activity of constituent ZnIn2S4 nanocrystals in the photochemical hydrogen evolution reaction. As an outcome, the optimized single-component ZnIn2S4 mesostructure produces hydrogen at a 7.8 mmol gcat–1 h–1 release rate under ultraviolet (UV)–visible light irradiation associated with an apparent quantum yield (AQY) of 17.2% at 420 ± 10 nm, far surpassing its microstructured counterpart by a factor of 10.7×. These findings provide a valuable perspective for the rational design of semiconductor nanostructures through synthetic engineering, aiming at the development of high-performance catalysts for zero-carbon energy-related applications.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.