{"title":"TB-mBJ for doping concentration effects on magneto-optical properties in ZnMnxSn(1−x)As2 spintronics materials","authors":"Anuj Kumar , Aman Kumar , Parveen Jain , Sandeep Kumar Pundir , Nempal Singh","doi":"10.1016/j.ijleo.2024.172039","DOIUrl":null,"url":null,"abstract":"<div><p>An investigation for electronic, magnetic, and optical properties of Mn-doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> compound performed using advanced computational methods. Using spin-polarized density functional theory (DFT) calculations with local orbital linearized augmented plane wave (lo-LAPW) method and Tran–Blaha’s modified Becke–Johnson (TB-mBJ) functional, Mn-doped n-type chalcopyrite semiconductor <span><math><mrow><msub><mrow><mi>ZnMn</mi></mrow><mrow><mi>x</mi></mrow></msub><msub><mrow><mi>Sn</mi></mrow><mrow><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>x</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>As</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span>, studied within varying Mn doping concentration range <span><math><mrow><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mn>0</mn><mo>.</mo><mn>5</mn></mrow></math></span>. Doping of Mn to Sn site in pure <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> creates a strong spin effect, which makes it useful spintronic materials. We observed with increase the Mn concentration in <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, energy bandgap changes while the magnetic strength of the unit cell remains unchanged, showing stability of system’s magnetism. Optical properties of the Mn doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> compounds analysed in term of dielectric function, absorption spectra, and refractive index. Optical properties show, compound is optically low active in the Infrared (IR) region and more active in visible and ultraviolet (UV) region. The electronic and optical properties of Mn-doped <span><math><msub><mrow><mi>ZnSnAs</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, offer potential technological advancements in semiconductor device design technology and engineering.</p></div>","PeriodicalId":19513,"journal":{"name":"Optik","volume":"315 ","pages":"Article 172039"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optik","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030402624004388","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
An investigation for electronic, magnetic, and optical properties of Mn-doped compound performed using advanced computational methods. Using spin-polarized density functional theory (DFT) calculations with local orbital linearized augmented plane wave (lo-LAPW) method and Tran–Blaha’s modified Becke–Johnson (TB-mBJ) functional, Mn-doped n-type chalcopyrite semiconductor , studied within varying Mn doping concentration range . Doping of Mn to Sn site in pure creates a strong spin effect, which makes it useful spintronic materials. We observed with increase the Mn concentration in , energy bandgap changes while the magnetic strength of the unit cell remains unchanged, showing stability of system’s magnetism. Optical properties of the Mn doped compounds analysed in term of dielectric function, absorption spectra, and refractive index. Optical properties show, compound is optically low active in the Infrared (IR) region and more active in visible and ultraviolet (UV) region. The electronic and optical properties of Mn-doped , offer potential technological advancements in semiconductor device design technology and engineering.
期刊介绍:
Optik publishes articles on all subjects related to light and electron optics and offers a survey on the state of research and technical development within the following fields:
Optics:
-Optics design, geometrical and beam optics, wave optics-
Optical and micro-optical components, diffractive optics, devices and systems-
Photoelectric and optoelectronic devices-
Optical properties of materials, nonlinear optics, wave propagation and transmission in homogeneous and inhomogeneous materials-
Information optics, image formation and processing, holographic techniques, microscopes and spectrometer techniques, and image analysis-
Optical testing and measuring techniques-
Optical communication and computing-
Physiological optics-
As well as other related topics.