Structural, morphological, and optical properties of CuO nanoblade-decorated TiO2 nanotubular photoelectrodes

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Physica B-condensed Matter Pub Date : 2024-09-18 DOI:10.1016/j.physb.2024.416554
{"title":"Structural, morphological, and optical properties of CuO nanoblade-decorated TiO2 nanotubular photoelectrodes","authors":"","doi":"10.1016/j.physb.2024.416554","DOIUrl":null,"url":null,"abstract":"<div><p>Titania (TiO<sub>2</sub>) nanotubular photoelectrodes are a competitive component of titania-based photoelectrochemical water splitting systems. However, TiO<sub>2</sub> actively absorbs light in the UV region, which limits its usefulness in solar water splitting, a fast-growing clean energy alternative. In this study, the structural, morphological and optical properties of CuO/TiO<sub>2</sub> nanostructures on conductive transparent F-doped SnO<sub>2</sub> (FTO) coated glass substrates are engineered for potential application in solar water splitting. The efficacy of a three-step anodization synthesis process to develop free-standing high-fidelity nanotubular TiO<sub>2</sub> thin films <span><math><mrow><mo>(</mo><mrow><mo>∼</mo><mn>8</mn><mspace></mspace><mo>μ</mo><mi>m</mi></mrow><mo>)</mo></mrow></math></span> is demonstrated. CuO nanoblades were deposited on TiO<sub>2</sub>/FTO by a successive ionic layer adsorption reaction (SILAR). An increase in the precursor concentration and number of immersion cycles influenced the adsorption of CuO and the resultant red shift in the absorption range. SEM and TEM analyses confirm the formation of a heterostructure, with evidence of CuO nanostructures within the TiO<sub>2</sub> nanotubular arrays and on the top of the tubes.</p></div>","PeriodicalId":20116,"journal":{"name":"Physica B-condensed Matter","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica B-condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921452624008950","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Titania (TiO2) nanotubular photoelectrodes are a competitive component of titania-based photoelectrochemical water splitting systems. However, TiO2 actively absorbs light in the UV region, which limits its usefulness in solar water splitting, a fast-growing clean energy alternative. In this study, the structural, morphological and optical properties of CuO/TiO2 nanostructures on conductive transparent F-doped SnO2 (FTO) coated glass substrates are engineered for potential application in solar water splitting. The efficacy of a three-step anodization synthesis process to develop free-standing high-fidelity nanotubular TiO2 thin films (8μm) is demonstrated. CuO nanoblades were deposited on TiO2/FTO by a successive ionic layer adsorption reaction (SILAR). An increase in the precursor concentration and number of immersion cycles influenced the adsorption of CuO and the resultant red shift in the absorption range. SEM and TEM analyses confirm the formation of a heterostructure, with evidence of CuO nanostructures within the TiO2 nanotubular arrays and on the top of the tubes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铜氧化物纳米包覆装饰的二氧化钛纳米管光电极的结构、形态和光学特性
二氧化钛(TiO2)纳米管光电极是二氧化钛光电化学分水系统中具有竞争力的组成部分。然而,TiO2 会主动吸收紫外线区域的光,这限制了它在太阳能水分离这一快速增长的清洁能源替代技术中的作用。本研究在导电透明的 F 掺杂二氧化锡(FTO)镀膜玻璃基底上设计了 CuO/TiO2 纳米结构的结构、形态和光学特性,使其在太阳能水分离中得到潜在应用。实验证明了三步阳极氧化合成工艺在开发独立的高保真纳米管状 TiO2 薄膜(∼8μm)方面的功效。通过连续离子层吸附反应(SILAR)在 TiO2/FTO 上沉积了 CuO 纳米薄膜。前驱体浓度和浸泡循环次数的增加影响了 CuO 的吸附以及由此产生的吸收范围的红移。SEM 和 TEM 分析证实了异质结构的形成,有证据表明在 TiO2 纳米管阵列内和管子顶部存在 CuO 纳米结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physica B-condensed Matter
Physica B-condensed Matter 物理-物理:凝聚态物理
CiteScore
4.90
自引率
7.10%
发文量
703
审稿时长
44 days
期刊介绍: Physica B: Condensed Matter comprises all condensed matter and material physics that involve theoretical, computational and experimental work. Papers should contain further developments and a proper discussion on the physics of experimental or theoretical results in one of the following areas: -Magnetism -Materials physics -Nanostructures and nanomaterials -Optics and optical materials -Quantum materials -Semiconductors -Strongly correlated systems -Superconductivity -Surfaces and interfaces
期刊最新文献
Magnetic structure and colossal dielectric properties in Ga3+ substituted Zn2Y hexaferrites by chemical co-precipitation method Investigation of magneto-optoelectronics properties of Mg1-xMnxS alloys for optoelectronics and spintronic applications Persistence luminescence and thermoluminescence of 260 nm UVC irradiated mixed-phase (BaAl2O4 - BaAl12O19) barium aluminate Synthesis, characterization, electrochemical impedance spectroscopy performance and photodegradation of methylene blue: Mesoporous PEG/TiO2 by sol-gel electrospinning Gradient distribution of cations in rhabdophane La0.27Y0.73PO4·nH2O nanoparticles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1