Le Huy Thai , Le Thi Thanh Nhi , Nguyen Minh Hiep , Dinh Thanh Khan , Trinh Ngoc Dat , Le Vu Truong Son , Truong Quang Trung , Le Hoang Sinh
{"title":"All-in-one electrochromic device from viologen-based Cu-MOF and photocurable eutectogel","authors":"Le Huy Thai , Le Thi Thanh Nhi , Nguyen Minh Hiep , Dinh Thanh Khan , Trinh Ngoc Dat , Le Vu Truong Son , Truong Quang Trung , Le Hoang Sinh","doi":"10.1016/j.solmat.2024.113179","DOIUrl":null,"url":null,"abstract":"<div><p>A novel all-in-one electrochromic device from viologen-based Cu-MOF was demonstrated successfully for the first time. The viologen-based Cu-MOF was dispersed in a photochemical eutectic solvent and directly used as an electrochromic material with the outstanding advantage of good modulation ability in a wide range of visible light. The electrochromic device's (ECD) color changed from transparent and light lime green to blue during the change of potential from 0 V to −3.5 V. The bistability of the ECD was demonstrated by the transmittance degradation of less than 10 % over 1.79 h when the power was turned off. This showed that the ECD could maintain its optical state long without a continuous power supply.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"278 ","pages":"Article 113179"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024824004914","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel all-in-one electrochromic device from viologen-based Cu-MOF was demonstrated successfully for the first time. The viologen-based Cu-MOF was dispersed in a photochemical eutectic solvent and directly used as an electrochromic material with the outstanding advantage of good modulation ability in a wide range of visible light. The electrochromic device's (ECD) color changed from transparent and light lime green to blue during the change of potential from 0 V to −3.5 V. The bistability of the ECD was demonstrated by the transmittance degradation of less than 10 % over 1.79 h when the power was turned off. This showed that the ECD could maintain its optical state long without a continuous power supply.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.