L. Liu , H. Wang , D.T. Zhang , C. Qiu , D.L. Chen
{"title":"Microstructure and mechanical properties of a low-alloyed Mg–Zn–Al–Ca alloy: Effect of extrusion speed","authors":"L. Liu , H. Wang , D.T. Zhang , C. Qiu , D.L. Chen","doi":"10.1016/j.jmrt.2024.09.098","DOIUrl":null,"url":null,"abstract":"<div><p>A low-alloyed Mg-1.2Zn-0.6Al-0.1Ca (wt.%) alloy was extruded at 200 °C with different ram speeds (0.5–4.0 mm/s), and the microstructure and mechanical properties were studied systematically. Heterostructures with fine dynamic recrystallized (DRXed) grains and coarse unDRXed grains were achieved at lower ram speeds of 0.5 mm/s and 1.0 mm/s, and fully-DRXed microstructure was attained at 4.0 mm/s. Increasing the extrusion speed resulted in an increase in DRXed grain size from 0.9 μm to 3.8 μm, and a transformation of the DRXed texture component from <10 to 10>−<11–20> to a new orientation that deviated by approximately 14°. The sample extruded at 0.5 mm/s presented an excellent tensile yield strength (TYS) of 369 MPa along with a 7.8% elongation, which was mainly due to the high hetero-deformation induced (HDI) strengthening provided by its heterostructures. Increasing ram speed resulted in an improved elongation despite a decreased TYS. The reasons for the decreased strength with increasing extrusion speed were mainly associated with grain growth, reduced dislocation density and weakened HDI strengthening. The reasons for the improved ductility with increasing extrusion speed were largely due to the increased DRXed grains fraction with soft orientations.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 1165-1175"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424020994/pdfft?md5=540c03068bd10d64e60224511efa809b&pid=1-s2.0-S2238785424020994-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424020994","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A low-alloyed Mg-1.2Zn-0.6Al-0.1Ca (wt.%) alloy was extruded at 200 °C with different ram speeds (0.5–4.0 mm/s), and the microstructure and mechanical properties were studied systematically. Heterostructures with fine dynamic recrystallized (DRXed) grains and coarse unDRXed grains were achieved at lower ram speeds of 0.5 mm/s and 1.0 mm/s, and fully-DRXed microstructure was attained at 4.0 mm/s. Increasing the extrusion speed resulted in an increase in DRXed grain size from 0.9 μm to 3.8 μm, and a transformation of the DRXed texture component from <10 to 10>−<11–20> to a new orientation that deviated by approximately 14°. The sample extruded at 0.5 mm/s presented an excellent tensile yield strength (TYS) of 369 MPa along with a 7.8% elongation, which was mainly due to the high hetero-deformation induced (HDI) strengthening provided by its heterostructures. Increasing ram speed resulted in an improved elongation despite a decreased TYS. The reasons for the decreased strength with increasing extrusion speed were mainly associated with grain growth, reduced dislocation density and weakened HDI strengthening. The reasons for the improved ductility with increasing extrusion speed were largely due to the increased DRXed grains fraction with soft orientations.
期刊介绍:
The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.