Optimal density functional theory to predict electron affinities of polycyclic aromatic hydrocarbon molecules

IF 2.8 3区 化学 Q3 CHEMISTRY, PHYSICAL Chemical Physics Letters Pub Date : 2024-09-19 DOI:10.1016/j.cplett.2024.141646
{"title":"Optimal density functional theory to predict electron affinities of polycyclic aromatic hydrocarbon molecules","authors":"","doi":"10.1016/j.cplett.2024.141646","DOIUrl":null,"url":null,"abstract":"<div><p>Polycyclic aromatic hydrocarbons (PAH) molecules serve as fundamental building blocks in the formation of graphene, a highly versatile material with diverse applications. Understanding the electrical properties of PAH molecules is pivotal in defining the conductivity of graphene, as the latter’s conductive behavior is inherently linked to its molecular structure. Electron affinity (EA) stands out as a crucial parameter in assessing the electrical characteristics of PAH molecules. However, the experimental determination of EA entails significant costs, prompting researchers to turn to computational methods for estimation. Despite advancements in computational resources and theoretical techniques, particularly within density functional theory (DFT), the optimal method for estimating EA remains unclear. In this study, we systematically evaluate various functionals and basis sets to determine the most accurate approach for estimating the electron affinity of PAH molecules.</p></div>","PeriodicalId":273,"journal":{"name":"Chemical Physics Letters","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Letters","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009261424005888","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Polycyclic aromatic hydrocarbons (PAH) molecules serve as fundamental building blocks in the formation of graphene, a highly versatile material with diverse applications. Understanding the electrical properties of PAH molecules is pivotal in defining the conductivity of graphene, as the latter’s conductive behavior is inherently linked to its molecular structure. Electron affinity (EA) stands out as a crucial parameter in assessing the electrical characteristics of PAH molecules. However, the experimental determination of EA entails significant costs, prompting researchers to turn to computational methods for estimation. Despite advancements in computational resources and theoretical techniques, particularly within density functional theory (DFT), the optimal method for estimating EA remains unclear. In this study, we systematically evaluate various functionals and basis sets to determine the most accurate approach for estimating the electron affinity of PAH molecules.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测多环芳烃分子电子亲和性的最佳密度泛函理论
多环芳烃(PAH)分子是形成石墨烯的基本构件,石墨烯是一种用途广泛的材料。了解多环芳烃分子的电特性对于确定石墨烯的导电性至关重要,因为后者的导电行为与其分子结构有着内在联系。电子亲和力(EA)是评估 PAH 分子电学特性的关键参数。然而,实验测定 EA 需要大量成本,这促使研究人员转而采用计算方法进行估算。尽管计算资源和理论技术不断进步,尤其是密度泛函理论(DFT),但估算 EA 的最佳方法仍不明确。在本研究中,我们系统地评估了各种函数和基集,以确定估算多环芳烃分子电子亲和力的最准确方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Physics Letters
Chemical Physics Letters 化学-物理:原子、分子和化学物理
CiteScore
5.70
自引率
3.60%
发文量
798
审稿时长
33 days
期刊介绍: Chemical Physics Letters has an open access mirror journal, Chemical Physics Letters: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Chemical Physics Letters publishes brief reports on molecules, interfaces, condensed phases, nanomaterials and nanostructures, polymers, biomolecular systems, and energy conversion and storage. Criteria for publication are quality, urgency and impact. Further, experimental results reported in the journal have direct relevance for theory, and theoretical developments or non-routine computations relate directly to experiment. Manuscripts must satisfy these criteria and should not be minor extensions of previous work.
期刊最新文献
Structural and electronic properties of amorphous silicon and germanium monolayers and nanotubes: A DFT investigation Electronic structure of ultrathin single-walled platinum nanotubes Development of a robust Machine learning model for Ames test outcome prediction The influence of intramolecular isotope effects on the reaction mechanisms of Ca+ + HD Theoretical study on the enhanced nonlinear optical responses of sulflowers and selenosulflowers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1