Carbon sequestration behavior of magnesium oxychloride cement based on salt lakes magnesium residue and industrial solid waste

{"title":"Carbon sequestration behavior of magnesium oxychloride cement based on salt lakes magnesium residue and industrial solid waste","authors":"","doi":"10.1016/j.ccst.2024.100301","DOIUrl":null,"url":null,"abstract":"<div><p>With the extensive utilization of lithium-ion battery in the electric vehicle and energy storage field, the consumption of lithium has been sharply increasing. Lithium resource occurrence area were facing increasing environmental pressure, particularly the magnesium residue (MR) produced in the lithium extraction process, and a sustainable exploitation pathway have not been established. In the framework of \"net-zero\", MRs were onverted to Salt lake magnesium oxide (SL-MgO) which was characterized by various elemental and surface analysis methods. Magnesium oxychloride cement (MOC) was prepared form SL-MgO and two industrial solid wastes [fly ash (FA) and phosphogypsum (PG)], and its carbon sequestration capacity was analyzed and evaluated. If all the MRs produced from the lithium extraction process were used to manufacture MOC materials for CO<sub>2</sub> sequestration. When the PG content was 20 %, the CO<sub>2</sub> sequestration capacity of the MOC was 0.29 kg/m<sup>2</sup>, the compressive strength was 85.30 MPa, and the MOC neutralized 220.10 % of the CO<sub>2</sub> emissions from the lithium extraction process. In this procedure, evidence was found of the typical metastable carbonate products identifiable. Overall, utilizing MRs and industrial solid waste to manufacture new low-carbon MOCs may become the most direct and effective countermeasures to alleviate environmental pressure in these regions.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824001131/pdfft?md5=7145c5a848f626375d22a4d324a97d9a&pid=1-s2.0-S2772656824001131-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the extensive utilization of lithium-ion battery in the electric vehicle and energy storage field, the consumption of lithium has been sharply increasing. Lithium resource occurrence area were facing increasing environmental pressure, particularly the magnesium residue (MR) produced in the lithium extraction process, and a sustainable exploitation pathway have not been established. In the framework of "net-zero", MRs were onverted to Salt lake magnesium oxide (SL-MgO) which was characterized by various elemental and surface analysis methods. Magnesium oxychloride cement (MOC) was prepared form SL-MgO and two industrial solid wastes [fly ash (FA) and phosphogypsum (PG)], and its carbon sequestration capacity was analyzed and evaluated. If all the MRs produced from the lithium extraction process were used to manufacture MOC materials for CO2 sequestration. When the PG content was 20 %, the CO2 sequestration capacity of the MOC was 0.29 kg/m2, the compressive strength was 85.30 MPa, and the MOC neutralized 220.10 % of the CO2 emissions from the lithium extraction process. In this procedure, evidence was found of the typical metastable carbonate products identifiable. Overall, utilizing MRs and industrial solid waste to manufacture new low-carbon MOCs may become the most direct and effective countermeasures to alleviate environmental pressure in these regions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hypercrosslinked natural biopolymers with quasi-unimodal micropores for carbon capture Post-combustion CO2 capture retrofit from diesel-powered Arctic mines – Techno-economic and environmental assessment Carbon sequestration behavior of magnesium oxychloride cement based on salt lakes magnesium residue and industrial solid waste CO2 capture via subsurface mineralization geological settings and engineering perspectives towards long-term storage and decarbonization in the Middle East In-situ hydrogenation of dual function material for integrated CO2 capture and methanation with the presence of steam
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1