{"title":"Effect of geometry on the natural frequency and seismic response characteristics of slopes subjected to pulse-like ground motions","authors":"","doi":"10.1016/j.compgeo.2024.106777","DOIUrl":null,"url":null,"abstract":"<div><p>Near-fault regions are particularly vulnerable to seismic-induced landslides due to the intense energy pulses in near-fault ground motions (NFGMs). These pulses, shaped by terrain geometry and material properties, significantly influence seismic response and slope stability. This study investigates the impact of slope geometry on natural frequency and seismic response characteristics under both pulse-like ground motions (PLGMs) and non-pulse ground motions (non-PGMs). The results show that increasing slope height lowers natural frequency, making the slope more susceptible to resonance with seismic waves, thus amplifying ground motion and increasing instability. Similarly, steeper slopes also reduces the natural frequency, heightening instability by up to 0.17%. PLGMs generate seismic responses approximately 7% stronger than those induced by non-PLGMs. Furthermore, as the frequency of PLGMs rises, so does their destructive potential. Material analysis reveals that Rock Class A has a natural frequency 68% higher than Rock Class D, making it significantly resistant to seismic deformation. These insights are essential for designing more resilient slopes in seismic-prone regions.</p></div>","PeriodicalId":55217,"journal":{"name":"Computers and Geotechnics","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266352X2400716X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Near-fault regions are particularly vulnerable to seismic-induced landslides due to the intense energy pulses in near-fault ground motions (NFGMs). These pulses, shaped by terrain geometry and material properties, significantly influence seismic response and slope stability. This study investigates the impact of slope geometry on natural frequency and seismic response characteristics under both pulse-like ground motions (PLGMs) and non-pulse ground motions (non-PGMs). The results show that increasing slope height lowers natural frequency, making the slope more susceptible to resonance with seismic waves, thus amplifying ground motion and increasing instability. Similarly, steeper slopes also reduces the natural frequency, heightening instability by up to 0.17%. PLGMs generate seismic responses approximately 7% stronger than those induced by non-PLGMs. Furthermore, as the frequency of PLGMs rises, so does their destructive potential. Material analysis reveals that Rock Class A has a natural frequency 68% higher than Rock Class D, making it significantly resistant to seismic deformation. These insights are essential for designing more resilient slopes in seismic-prone regions.
期刊介绍:
The use of computers is firmly established in geotechnical engineering and continues to grow rapidly in both engineering practice and academe. The development of advanced numerical techniques and constitutive modeling, in conjunction with rapid developments in computer hardware, enables problems to be tackled that were unthinkable even a few years ago. Computers and Geotechnics provides an up-to-date reference for engineers and researchers engaged in computer aided analysis and research in geotechnical engineering. The journal is intended for an expeditious dissemination of advanced computer applications across a broad range of geotechnical topics. Contributions on advances in numerical algorithms, computer implementation of new constitutive models and probabilistic methods are especially encouraged.