An amperometric stability study of titanium dioxide nanoparticle layer on interdigitated electrode contact based on morphology, structure, and surface-induced response

IF 2 4区 材料科学 Q3 MATERIALS SCIENCE, COATINGS & FILMS Thin Solid Films Pub Date : 2024-09-14 DOI:10.1016/j.tsf.2024.140526
Mohamad Nizar Hadi Mohamad Nassir , Sh. Nadzirah , Azrul Azlan Hamzah , Ahmad Ghadafi Ismail , Hung Wei Yu , Edward Yi Chang , Chang Fu Dee
{"title":"An amperometric stability study of titanium dioxide nanoparticle layer on interdigitated electrode contact based on morphology, structure, and surface-induced response","authors":"Mohamad Nizar Hadi Mohamad Nassir ,&nbsp;Sh. Nadzirah ,&nbsp;Azrul Azlan Hamzah ,&nbsp;Ahmad Ghadafi Ismail ,&nbsp;Hung Wei Yu ,&nbsp;Edward Yi Chang ,&nbsp;Chang Fu Dee","doi":"10.1016/j.tsf.2024.140526","DOIUrl":null,"url":null,"abstract":"<div><p>This paper investigates the amperometric stability of a Titanium Dioxide (TiO<sub>2</sub>) nanoparticle layer on an interdigitated electrode (IDE) to develop stable electronic devices. The devices were tested with varying numbers of spin-coat layers and annealing temperatures to achieve a TiO<sub>2</sub> nanoparticle layer with high crystallinity. Device fabrication involved coating a TiO<sub>2</sub> solution onto a silicon dioxide (SiO<sub>2</sub>) wafer with an IDE photomask. The devices were characterized using a Field-emission Scanning Electron Microscope (FESEM) and X-ray Diffractometer (XRD) to verify the crystallinity of the TiO<sub>2</sub>. Current-voltage (<em>I-V</em>) curves and real-time current measurements were also conducted to analyze the electrical properties of the device. FESEM results indicate that increasing the number of spin-coat layers and annealing temperature enhances the clarity of the spherical shape of TiO<sub>2</sub> nanoparticles and produces highly crystalline nanoparticles, as confirmed by XRD analysis. In terms of electrical analysis, the device exhibited a sharp increase in current, maintaining a range of 2.5 nA to 10 nA. This concludes that the TiO<sub>2</sub> device is highly sensitive, with excellent repeatability and response time, making it suitable for practical applications.</p></div>","PeriodicalId":23182,"journal":{"name":"Thin Solid Films","volume":"806 ","pages":"Article 140526"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin Solid Films","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040609024003274","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the amperometric stability of a Titanium Dioxide (TiO2) nanoparticle layer on an interdigitated electrode (IDE) to develop stable electronic devices. The devices were tested with varying numbers of spin-coat layers and annealing temperatures to achieve a TiO2 nanoparticle layer with high crystallinity. Device fabrication involved coating a TiO2 solution onto a silicon dioxide (SiO2) wafer with an IDE photomask. The devices were characterized using a Field-emission Scanning Electron Microscope (FESEM) and X-ray Diffractometer (XRD) to verify the crystallinity of the TiO2. Current-voltage (I-V) curves and real-time current measurements were also conducted to analyze the electrical properties of the device. FESEM results indicate that increasing the number of spin-coat layers and annealing temperature enhances the clarity of the spherical shape of TiO2 nanoparticles and produces highly crystalline nanoparticles, as confirmed by XRD analysis. In terms of electrical analysis, the device exhibited a sharp increase in current, maintaining a range of 2.5 nA to 10 nA. This concludes that the TiO2 device is highly sensitive, with excellent repeatability and response time, making it suitable for practical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于形态、结构和表面诱导响应的交错电极接触上二氧化钛纳米粒子层的安培稳定性研究
本文研究了插接电极(IDE)上二氧化钛(TiO2)纳米粒子层的安培稳定性,以开发稳定的电子器件。为了获得结晶度较高的二氧化钛纳米粒子层,对器件进行了不同旋涂层数量和退火温度的测试。器件的制作包括用 IDE 光掩膜在二氧化硅(SiO2)晶片上涂覆 TiO2 溶液。使用场发射扫描电子显微镜(FESEM)和 X 射线衍射仪(XRD)对器件进行了表征,以验证二氧化钛的结晶度。此外,还通过电流-电压(I-V)曲线和实时电流测量来分析器件的电气特性。FESEM 结果表明,增加旋涂层数和退火温度可提高 TiO2 纳米粒子球形形状的清晰度,并产生高结晶度的纳米粒子,这一点已得到 XRD 分析的证实。在电学分析方面,该器件的电流急剧增加,保持在 2.5 nA 至 10 nA 的范围内。由此得出结论,TiO2 器件灵敏度高,具有出色的重复性和响应时间,适合实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Thin Solid Films
Thin Solid Films 工程技术-材料科学:膜
CiteScore
4.00
自引率
4.80%
发文量
381
审稿时长
7.5 months
期刊介绍: Thin Solid Films is an international journal which serves scientists and engineers working in the fields of thin-film synthesis, characterization, and applications. The field of thin films, which can be defined as the confluence of materials science, surface science, and applied physics, has become an identifiable unified discipline of scientific endeavor.
期刊最新文献
Characterization and comparison of hydrogenated and unhydrogenated amorphous boron carbon nitride films deposited via radio frequency magnetron sputtering Analysis of the tribological behavior of diamond-like carbon coatings applied to AISI M2 high-speed steel The comparative study of citrate-sulphate bath with and without ammonium ion and its effect on electrodeposition and selected properties of ternary Zn-Fe-Mo alloy coatings for corrosion protection Wafer-scale aluminium nitride nanostructures for solar-blind ultra-violet detection Molybdenum nitride thin films synthesized by microwave electron cyclotron resonance – Assisted reactive pulsed laser deposition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1