Emmanuel Busillo, Martina Damizia, Paolo De Filippis, Benedetta de Caprariis
{"title":"Methane pyrolysis in molten media: The interplay of physical properties and catalytic activity on carbon and hydrogen production","authors":"Emmanuel Busillo, Martina Damizia, Paolo De Filippis, Benedetta de Caprariis","doi":"10.1016/j.jaap.2024.106752","DOIUrl":null,"url":null,"abstract":"<div><p>Methane pyrolysis is now considered a promising process for producing clean hydrogen and high-value carbon materials. However, it requires very high temperatures (above 1000 °C) due to the kinetic barriers posed by the stable C-H bond, and the production of carbon presents a significant challenge. While solid catalysts can lower the operational temperatures to some extent, they are hindered by carbon accumulation, which deactivates the catalysts and clogs reactors, thus limiting process scalability. Recently, molten media have emerged as potential catalysts for methane pyrolysis. These media offer numerous advantages, including high thermal conductivity and resistance to deactivation via sintering or coking. Despite these advantages, a comprehensive understanding of how the physical properties and intrinsic catalytic activities of molten media influence methane pyrolysis is lacking. This review addresses this gap by examining the roles of physical properties, mainly surface tension, and catalytic activity in methane conversion and carbon morphology. The analysis of apparent activation energies across various molten media indicates that their physical properties significantly impact methane reactivity, challenging the conventional notion of catalytic activity. In summary, this review explores the synergistic effects of molten media's physical and catalytic properties on methane pyrolysis, highlighting the potential for these systems to revolutionize the process by enhancing efficiency and reducing operational challenges. Understanding these interactions is key to advancing the scalability and applicability of methane pyrolysis technologies for sustainable hydrogen production.</p></div>","PeriodicalId":345,"journal":{"name":"Journal of Analytical and Applied Pyrolysis","volume":"183 ","pages":"Article 106752"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165237024004078/pdfft?md5=34fc97f561086f92900d2eb7e2b00c89&pid=1-s2.0-S0165237024004078-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical and Applied Pyrolysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165237024004078","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methane pyrolysis is now considered a promising process for producing clean hydrogen and high-value carbon materials. However, it requires very high temperatures (above 1000 °C) due to the kinetic barriers posed by the stable C-H bond, and the production of carbon presents a significant challenge. While solid catalysts can lower the operational temperatures to some extent, they are hindered by carbon accumulation, which deactivates the catalysts and clogs reactors, thus limiting process scalability. Recently, molten media have emerged as potential catalysts for methane pyrolysis. These media offer numerous advantages, including high thermal conductivity and resistance to deactivation via sintering or coking. Despite these advantages, a comprehensive understanding of how the physical properties and intrinsic catalytic activities of molten media influence methane pyrolysis is lacking. This review addresses this gap by examining the roles of physical properties, mainly surface tension, and catalytic activity in methane conversion and carbon morphology. The analysis of apparent activation energies across various molten media indicates that their physical properties significantly impact methane reactivity, challenging the conventional notion of catalytic activity. In summary, this review explores the synergistic effects of molten media's physical and catalytic properties on methane pyrolysis, highlighting the potential for these systems to revolutionize the process by enhancing efficiency and reducing operational challenges. Understanding these interactions is key to advancing the scalability and applicability of methane pyrolysis technologies for sustainable hydrogen production.
期刊介绍:
The Journal of Analytical and Applied Pyrolysis (JAAP) is devoted to the publication of papers dealing with innovative applications of pyrolysis processes, the characterization of products related to pyrolysis reactions, and investigations of reaction mechanism. To be considered by JAAP, a manuscript should present significant progress in these topics. The novelty must be satisfactorily argued in the cover letter. A manuscript with a cover letter to the editor not addressing the novelty is likely to be rejected without review.